第三课 欠拟合与过拟合的概念

1.局部权重线性回归(自译)
—–Locally weighted linear regression

在介绍该中线性回归方法之前,先引入一些概念:
- 欠拟合(underfitting):对训练特征的复杂度或者说特征空间的维度估计过低,导致拟合效果不足的现象
- 过拟合(overfitting):训练特征的复杂度或者说特征空间的维度估计过高,导致过分拟合的结果
因为两种拟合都不能得到满意的拟合结果,在线性回归中加入权重函数,得到locally weighted linear regression
该方法通过最小化下式来得到需要预测的点的参数 θ :
这里写图片描述
其中 这里写图片描述
个人认为,该算法通过对局部取样本点,达到通过局部的线性来拟合非线性的效果,其中权重函数相当于一个截断函数,宽度由带宽参数 τ2 控制,这里权重函数可以取其他合适的函数。该方法计算量大,对于每一个预测点需要单独计算参数。
该方法是一个non-parametric算法:对于每一个新的预测点,我们需要保留原始训练集,重新训练。
parametric算法:一次训练后,可以得到固定的参数,训练集即可以丢弃。

对于线性回归的概率解释
—–Probabilistic interpretation

在频率学家的认知中, θ 是事物固有的参数,是一个常量,而我们需要预测的目标值,是一个随机变量,该变量的概率密度函数由参数 θ 表示,由于中心极限定理,我们通常认为该变量概率密度函数为呈高斯状,如下式:
这里写图片描述
这里写图片描述
定义可能性函数likelihood function:
这里写图片描述
根据最大可能性mamum likelihood原则,我们所选择的 θ 应该在定义域中使可能性函数值最大.
为了方便推导计算,对可能性函数取对数log,结果如下:
这里写图片描述
可见该种思路得到的结果与最小二乘方算法得到的最终形式相同,对上式进行分析,高斯函数的方差 τ2 对结果没有影响,这点会在后续的课程中进行讨论。

分类与逻辑回归

—–classification and logistic regression

对于二分类问题,之前的线性回归方法不太适用,因为目标函数值是离散的。因此我们引入逻辑函数logistic or sigmoid function:
这里写图片描述
这里写图片描述
概率密度函数可写为
这里写图片描述
可能性函数推导如下:
这里写图片描述

θ 使用梯度上升法:
这里写图片描述
这里写图片描述
注意,该算法与LMS算法并不相同,这里h函数是一个非线性函数,不过奇妙的是最后我们使用了相同的更新算法,即梯度下降与梯度上升。这背后的原因将会在GML模型中得到深入的分析。

补充:感知器算法

对逻辑函数进行修正:
这里写图片描述
然后使用梯度上升计算参数
这里写图片描述
这便是感知器算法。
请注意,感知器算法不同于逻辑回归算法和最小均方差算法,它不能找到合理地概率论的解释,或者像最大可能性函数一样推导感知器。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值