pytorch_practice_model

 

 

 

import copy

import numpy as np

import torch
import torch.nn.functional as F
from torch import nn

START_TAG = "START"
STOP_TAG = "STOP"

def log_sum_exp(vec):
    max_score = torch.max(vec, 0)[0].unsqueeze(0)
    max_score_broadcast = max_score.expand(vec.size(1), vec.size(1))
    result = max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast), 0)).unsqueeze(0)
    return result.squeeze(1)

class BiLSTMCRF(nn.Module):

    def __init__(
            self, 
            tag_map={"O":0, "B-COM":1, "I-COM":2, "E-COM":3, "START":4, "STOP":5},
            batch_size=20,
            vocab_size=20,
            hidden_dim=128,
            dropout=1.0,
            embedding_dim=100
        ):
        super(BiLSTMCRF, self).__init__()
        self.batch_size = batch_size
        self.hidden_dim = hidden_dim
        self.embedding_dim = embedding_dim
        self.vocab_size = vocab_size
        self.dropout = dropout
        
        self.tag_size = len(tag_map)
        self.tag_map = tag_map
        
        self.transitions = nn.Parameter(
            torch.randn(self.tag_size, self.tag_size)
        )
        self.transitions.data[:, self.tag_map[START_TAG]] = -1000.
        self.transitions.data[self.tag_map[STOP_TAG], :] = -1000.

        self.word_embeddings = nn.Embedding(vocab_size, self.embedding_dim)
        self.lstm = nn.LSTM(self.embedding_dim, self.hidden_dim // 2,
                        num_layers=1, bidirectional=True, batch_first=True, dropout=self.dropout)
        self.hidden2tag = nn.Linear(self.hidden_dim, self.tag_size)
        self.hidden = self.init_hidden()

    def init_hidden(self):
        return (torch.randn(2, self.batch_size, self.hidden_dim // 2),
                torch.randn(2, self.batch_size, self.hidden_dim // 2))

    def __get_lstm_features(self, sentence):
        self.hidden = self.init_hidden()
        length = sentence.shape[1]
        embeddings = self.word_embeddings(sentence).view(self.batch_size, length, self.embedding_dim)

        lstm_out, self.hidden = self.lstm(embeddings, self.hidden)
        lstm_out = lstm_out.view(self.batch_size, -1, self.hidden_dim)
        logits = self.hidden2tag(lstm_out)
        return logits
    
    def real_path_score_(self, feats, tags):
        # Gives the score of a provided tag sequence
        score = torch.zeros(1)
        tags = torch.cat([torch.tensor([self.tag_map[START_TAG]], dtype=torch.long), tags])
        for i, feat in enumerate(feats):
            score = score + \
                self.transitions[tags[i], tags[i+1]] + feat[tags[i + 1]]
        score = score + self.transitions[tags[-1], self.tag_map[STOP_TAG]]
        return score

    def real_path_score(self, logits, label):
        '''
        caculate real path score  
        :params logits -> [len_sent * tag_size]
        :params label  -> [1 * len_sent]

        Score = Emission_Score + Transition_Score  
        Emission_Score = logits(0, label[START]) + logits(1, label[1]) + ... + logits(n, label[STOP])  
        Transition_Score = Trans(label[START], label[1]) + Trans(label[1], label[2]) + ... + Trans(label[n-1], label[STOP])  
        '''
        score = torch.zeros(1)
        label = torch.cat([torch.tensor([self.tag_map[START_TAG]], dtype=torch.long), label])
        for index, logit in enumerate(logits):
            emission_score = logit[label[index + 1]]
            transition_score = self.transitions[label[index], label[index + 1]]
            score += emission_score + transition_score
        score += self.transitions[label[-1], self.tag_map[STOP_TAG]]
        return score

    def total_score(self, logits, label):
        """
        caculate total score

        :params logits -> [len_sent * tag_size]
        :params label  -> [1 * tag_size]

        SCORE = log(e^S1 + e^S2 + ... + e^SN)
        """
        obs = []
        previous = torch.full((1, self.tag_size), 0)
        for index in range(len(logits)): 
            previous = previous.expand(self.tag_size, self.tag_size).t()
            obs = logits[index].view(1, -1).expand(self.tag_size, self.tag_size)
            scores = previous + obs + self.transitions
            previous = log_sum_exp(scores)
        previous = previous + self.transitions[:, self.tag_map[STOP_TAG]]
        # caculate total_scores
        total_scores = log_sum_exp(previous.t())[0]
        return total_scores

    def neg_log_likelihood(self, sentences, tags, length):
        self.batch_size = sentences.size(0)
        logits = self.__get_lstm_features(sentences)
        real_path_score = torch.zeros(1)
        total_score = torch.zeros(1)
        for logit, tag, leng in zip(logits, tags, length):
            logit = logit[:leng]
            tag = tag[:leng]
            real_path_score += self.real_path_score(logit, tag)
            total_score += self.total_score(logit, tag)
        # print("total score ", total_score)
        # print("real score ", real_path_score)
        return total_score - real_path_score

    def forward(self, sentences, lengths=None):
        """
        :params sentences sentences to predict
        :params lengths represent the ture length of sentence, the default is sentences.size(-1)
        """
        sentences = torch.tensor(sentences, dtype=torch.long)
        if not lengths:
            lengths = [i.size(-1) for i in sentences]
        self.batch_size = sentences.size(0)
        logits = self.__get_lstm_features(sentences)
        scores = []
        paths = []
        for logit, leng in zip(logits, lengths):
            logit = logit[:leng]
            score, path = self.__viterbi_decode(logit)
            scores.append(score)
            paths.append(path)
        return scores, paths
    
    def __viterbi_decode(self, logits):
        backpointers = []
        trellis = torch.zeros(logits.size())
        backpointers = torch.zeros(logits.size(), dtype=torch.long)
        
        trellis[0] = logits[0]
        for t in range(1, len(logits)):
            v = trellis[t - 1].unsqueeze(1).expand_as(self.transitions) + self.transitions
            trellis[t] = logits[t] + torch.max(v, 0)[0]
            backpointers[t] = torch.max(v, 0)[1]
        viterbi = [torch.max(trellis[-1], -1)[1].cpu().tolist()]
        backpointers = backpointers.numpy()
        for bp in reversed(backpointers[1:]):
            viterbi.append(bp[viterbi[-1]])
        viterbi.reverse()

        viterbi_score = torch.max(trellis[-1], 0)[0].cpu().tolist()
        return viterbi_score, viterbi

    def __viterbi_decode_v1(self, logits):
        init_prob = 1.0
        trans_prob = self.transitions.t()
        prev_prob = init_prob
        path = []
        for index, logit in enumerate(logits):
            if index == 0:
                obs_prob = logit * prev_prob
                prev_prob = obs_prob
                prev_score, max_path = torch.max(prev_prob, -1)
                path.append(max_path.cpu().tolist())
                continue
            obs_prob = (prev_prob * trans_prob).t() * logit
            max_prob, _ = torch.max(obs_prob, 1)
            _, final_max_index = torch.max(max_prob, -1)
            prev_prob = obs_prob[final_max_index]
            prev_score, max_path = torch.max(prev_prob, -1)
            path.append(max_path.cpu().tolist())
        return prev_score.cpu().tolist(), path

 

Sure, here's an example implementation of a linear SVM model for binary classification using PyTorch and autograd for optimization: ``` import torch import torch.nn as nn import torch.optim as optim class LinearSVM(nn.Module): def __init__(self, input_dim): super(LinearSVM, self).__init__() self.weights = nn.Parameter(torch.randn(input_dim)) self.bias = nn.Parameter(torch.randn(1)) def forward(self, x): linear_output = torch.dot(x, self.weights) + self.bias return linear_output # Define training data and labels train_data = torch.tensor([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0]]) train_labels = torch.tensor([1, 1, -1, -1]) # Initialize model and optimizer svm = LinearSVM(input_dim=2) optimizer = optim.SGD(svm.parameters(), lr=0.01) # Define training loop num_epochs = 1000 for epoch in range(num_epochs): svm.train() optimizer.zero_grad() output = svm(train_data) loss = torch.mean(torch.clamp(1 - train_labels * output, min=0)) loss.backward() optimizer.step() # Evaluate model on test data test_data = torch.tensor([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]]) svm.eval() test_predictions = torch.sign(svm(test_data)).detach().numpy() print(test_predictions) ``` In this example, we define a `LinearSVM` class that inherits from `nn.Module` and implements a linear SVM model with a single linear layer. We use `nn.Parameter` to define the model's weight and bias parameters, which are then optimized using the `optim.SGD` optimizer. In the training loop, we compute the SVM loss using the hinge loss function and backpropagate the gradients using autograd. We then update the model parameters using the optimizer's `step` method. Finally, we evaluate the trained model on some test data by passing it through the model and taking the sign of the output (since the SVM is a binary classifier). We use `detach().numpy()` to convert the output to a numpy array for easier interpretation. Note: This is just a simple example implementation of a linear SVM in PyTorch using autograd. In practice, you may want to use a more robust implementation or library for SVMs, such as LIBLINEAR or scikit-learn.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值