3D点云配准历史

先上一张基于自己理解绘制的点云配准的发展脉络图Figure 1, 从图中我们可以先直观的感受一下点云配准的发展: 前期以传统方法为主, 2018年及之后基于深度学习的配准方法居上。但是需要注意两点: (1) Figure 1中列出了方法并不全面,仅选取了部分代表性的点云配准方法; (2) Figure 1中记录的同一年内的配准方法的提出顺序可能有错误。

现在谈一下我对点云配准学习的认识。我感觉可以基于以下5个方面(不是严格的递进顺序)实现点云配准的学习和进阶。

  1. ICP算法。ICP算法应该是点云配准领域最为经典的算法, 介绍ICP的优秀文章已经有很多了, 这里就不推荐了。不过, 有兴趣的朋友可以查看一下Least-squares fitting of two 3-D point sets, 该文章发表于1987年的TPAMI, 论文只有短短3页, 但其是ICP算法的核心所在, 证明了如何在已知点对的关系时用SVD求解变换矩阵。
  2. PFH和FPFH特征和基于RANSAC的配准算法。ICP算法的缺点很明显,寻找点对应关系时是基于距离的, 当初始位姿很差时, ICP算法基本失效了。基于特征 + RANSAC的算法此时发挥了优势, 它通过点的特征寻找对应点对, 只要点的特征表达能力够强, 即使初始位姿很差, 也可以找到正确的点对应关系,从而实现点云配准; 但点的特征在大多数情况下是不鲁棒的, 所以结合RANSAC算法是一个不错的选择。特征描述子建议查看FPFH, 对应的论文为Fast point feature histograms (FPFH) for 3D registration (ICRA 2009).
  3. 端到端的深度学习配准模型。最近两三年的时间基于深度学习的配准模型出现很多, 包括基于global features-based和correspondence-based, 两种模式。Global features-based 方法包括 PointNetLK: Point Cloud Registration using PointNet (CVPR2019)和PCRNet: Point Cloud Registration Network using PointNet Encoding (arXiv2019). 这里可以优先看PCRNet, 因为其算法和实现较为简单, 容易follow。Correspondence-based方法的典型代表包括DCP (ICCV2019), PRNet (NeurIPS)和RPMNet (CVPR2020). 这些方法都是开源的, 除了PRNet的代码在训练时容易崩溃外,其它的代码都是不错的。其他还有很多的配准算法就不一一列出了,可以查看https://github.com/zhulf0804/3D-PointCloud.
  4. 基于RANSAC的深度学习配准模型。端到端的深度学习配准模型大多只在ModelNet40上是有效的, 面对真实的数据集如3DMatch和KITTI时则效果表现不好。一部分原因是真实数据集较为复杂, 另一部分原因是网络结构不足以准确学习大部分点的特征。由此,就会导致Inlier ratio较低, 端到端的配准网络不能发挥很好的效果。基于RANSAC的深度学习配准主要代表包括FCGF (ICCV 2019), D3Feat (CVPR2020) 和 PREDATOR (CVPR2021). 这三个工作都开源了, 有兴趣的可以查看论文,阅读一下代码。
  5. Open3D的使用。最后但也是很重要的一环,一个高效处理点云的工具,这里推荐Open3D. Open3D提供了4个和配准有关的函数,包括ICP及其变种, 基于RANSAC的算法和FGR算法等。针对题主提到的参数设置问题, 建议可以查看一下对应配准函数的源码,就很容易理解了。Open3D虽然文档的函数介绍写的不怎么样,但其源码写的还是很不错的。
  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值