[概率论] 正态分布

截图均来自3Blue1brown博客课程

一、正态分布为什么用e负x平方 e − x 2 e^{-x^{2}} ex2

在这里插入图片描述
x = 0 x=0 x=0处轴对称,但是在 x = 0 x=0 x=0处不可导(左导数为-1 ≠ \neq =右导数为1,不可导)

f ( x ) = e − x 2 f(x)=e^{-x^{2}} f(x)=ex2
当用x平方时,左右仍然对称,且在 x = 0 x=0 x=0处可导(左右导数均为1)。
此时,函数形状为倒扣钟形,并且可以进行从负无穷到正无穷的积分。

二、 π \sqrt{\pi} π 根号pi怎么求

A r e a = C = ∫ e − x 2 d x Area = C=\int e^{-x^{2}}dx Area=C=ex2dx

V o l u m n = ∫ e − y 2 e − x 2 d x = ∫ C e − x 2 d x = C 2 Volumn = \int e^{-y^{2}}e^{-x^{2}}dx = \int Ce^{-x^{2}}dx=C^{2} Volumn=ey2ex2dx=Cex2dx=C2

则求解出Volumn即可得Area,即C。

令 r= x 2 + y 2 \sqrt{x^2+y^2} x2+y2 (极坐标),则Volumn用极坐标表示:
在这里插入图片描述
即求取柱形体积,有厚度 d r dr dr,周长 2 π r 2\pi r 2πr,高 e − r 2 e^{-r^{2}} er2
则对于整个钟形体积有:
∫ 2 π r e − r 2 d r = π \int2\pi re^{-r^{2}}dr=\pi 2πrer2dr=π
即Volum= π \pi π,可得Area= π \sqrt{\pi} π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值