第五章 正态分布(概率论)

第五章 正态分布

5.1 正态分布 Normal Distribution

  • 标准正态分布 X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1) 称为 X X X 服从标准正态分布
    在这里插入图片描述

    • 密度函数
      ϕ ( x ) = 1 2 π e − x 2 2 , − ∞ < x < + ∞ \color{red}\phi(x)=\dfrac{1}{\sqrt{2\pi}}e^{-{x^2\over2}},\quad -\infty<x<+\infty ϕ(x)=2π 1e2x2,<x<+
    • 分布函数
      Φ ( x ) = ∫ − ∞ x 1 2 π e − t 2 2    d t \color{red}\Phi(x)=\int_{-\infty}^x \dfrac{1}{\sqrt{2\pi}}e^{-{t^2\over2}}\;dt Φ(x)=x2π 1e2t2dt
      验证 \color{White}\colorbox{Fuchsia}{验证} Φ ( + ∞ ) = 1 \Phi(+\infty)=1 Φ(+)=1
      证明:
      ∫ − ∞ + ∞ 1 2 π e − x 2 2    d x ⋅ ∫ − ∞ + ∞ 1 2 π e − y 2 2    d y = ∬ R 2 1 2 π e − 1 2 ( x 2 + y 2 )    d x d y = ∫ 0 2 π d θ ∫ 0 ∞ 1 2 π e − 1 2 r 2 r    d r = 1 \begin{aligned} &\int_{-\infty}^{+\infty} \dfrac{1}{\sqrt{2\pi}}e^{-{x^2\over2}}\;dx\cdot \int_{-\infty}^{+\infty} \dfrac{1}{\sqrt{2\pi}}e^{-{y^2\over2}}\;dy\\ =&\iint\limits_{R^2}\dfrac{1}{2\pi}e^{-{1\over2}(x^2+y^2)}\;dxdy\\ =&\int_0^{2\pi}d\theta\int_0^\infty \dfrac{1}{2\pi}e^{-{1\over 2}r^2}r\;dr\\ =&1 \end{aligned} ===+2π 1e2x2dx+2π 1e2y2dyR22π1e21(x2+y2)dxdy02πdθ02π1e21r2rdr1
    • 性质:偶函数 Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(x)=1Φ(x)
      • Φ ( 0 ) = 1 2 , Φ ( 1.96 ) = 0.975 \Phi(0)=\dfrac{1}{2},\Phi(1.96)=0.975 Φ(0)=21,Φ(1.96)=0.975,故 Φ ( 1.96 ) − Φ ( − 1.96 ) = 0.95 \Phi(1.96)-\Phi(-1.96)=0.95 Φ(1.96)Φ(1.96)=0.95 为大概率事件
  • 一般正态分布:若 X X X 满足 X − μ σ ∼ N ( 0 , 1 ) \dfrac{X-\mu}{\sigma}\sim N(0,1) σXμN(0,1),其中 μ , σ > 0 \mu,\sigma>0 μ,σ>0 是任意常数,则称 X X X 服从参数为 μ , σ 2 \mu,\sigma^2 μ,σ2 的正态分布, X ∼ N ( μ , σ 2 ) \color{red}X\sim N(\mu,\sigma^2) XN(μ,σ2)

    • 密度函数 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ \color{red}f(x)=\dfrac{1}{\sqrt{2\pi}\sigma}e^{-{(x-\mu)^2\over2\sigma^2}},\quad -\infty<x<+\infty f(x)=2π σ1e2σ2(xμ)2,<x<+
    • 分布函数 F ( x ) = Φ ( x − μ σ ) F(x)=\Phi(\dfrac{x-\mu}{\sigma}) F(x)=Φ(σxμ)
    • P ( a < x ≤ b ) = Φ ( b − μ σ ) − Φ ( a − μ σ ) P(a<x\le b)=\Phi(\dfrac{b-\mu}{\sigma})-\Phi(\dfrac{a-\mu}{\sigma}) P(a<xb)=Φ(σbμ)Φ(σaμ)
    • 图形性质
      1. 位置参数 μ \mu μ:关于直线 x = μ x=\mu x=μ 对称, max ⁡ { f ( x ) } = f ( μ ) = 1 2 π σ 2 \max\{f(x)\}=f(\mu)=\dfrac{1}{\sqrt{2\pi}\sigma^2} max{f(x)}=f(μ)=2π σ21
      2. 刻度参数 σ \sigma σ:当 σ \sigma σ 越小时, f ( x ) f(x) f(x) 图形越陡

5.2 正态分布的数字特征与线性性质

  • 数字特征

    • 标准正态分布:若 X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1),则 E ( X ) = 0 , D ( X ) = 1 \color{red}E(X)=0,D(X)=1 E(X)=0,D(X)=1

      证明:由于 Γ ( 1 2 ) = π \Gamma(\dfrac{1}{2})=\sqrt{\pi} Γ(21)=π
      E ( X ) = ∫ − ∞ + ∞ x 1 2 π e − x 2 2    d x = 0 D ( X ) = E ( Y 2 ) − 0 2 = ∫ − ∞ + ∞ x 2 1 2 π e − x 2 2    d x − 0 = 2 2 π ∫ 0 + ∞ x 2 e − x 2 2    d x 令 t = x 2 2 , 则 = 2 2 π ∫ 0 + ∞ 2 t e − t 2 2 t − 1 2    d t = 2 π Γ ( 3 2 ) = 1 \begin{aligned}E(X)&=\int_{-\infty}^{+\infty} x\dfrac{1}{\sqrt{2\pi}}e^{-{x^2\over2}}\;dx=0\\ D(X)&=E(Y^2)-0^2=\int_{-\infty}^{+\infty} x^2\dfrac{1}{\sqrt{2\pi}}e^{-{x^2\over2}}\;dx-0\\ &=\dfrac{2}{\sqrt{2\pi}}\int_0^{+\infty} x^2e^{-\dfrac{x^2}{2}}\;dx\\ 令 t=\dfrac{x^2}{2},则&=\dfrac{2}{\sqrt{2\pi}}\int_0^{+\infty}2te^{-t}\dfrac{\sqrt{2}}{2}t^{-{1\over 2}} \;dt\\ &=\dfrac{2}{\sqrt{\pi}}\Gamma(\dfrac{3}{2})\\ &=1 \end{aligned} E(X)D(X)t=2x2,=+x2π 1e2x2dx=0=E(Y2)02=+x22π 1e2x2dx0=2π 20+x2e2x2dx=2π 20+2tet22 t21dt=π 2Γ(23)=1

    • 一般正态分布:若 Y ∼ N ( μ , σ 2 ) Y\sim N(\mu,\sigma^2) YN(μ,σ2),则 E ( Y ) = μ , D ( Y ) = σ 2 \color{red}E(Y)=\mu,D(Y)=\sigma^2 E(Y)=μ,D(Y)=σ2

      证明:由于 Y = X − μ σ ⟹ X = σ Y + μ Y=\dfrac{X-\mu}{\sigma}\Longrightarrow X=\sigma Y+\mu Y=σXμX=σY+μ,从而 { E ( X ) = σ E ( Y ) + μ = μ D ( X ) = σ 2 D ( Y ) = σ 2 \begin{cases}E(X)=\sigma E(Y)+\mu=\mu\\ D(X)=\sigma^2 D(Y)=\sigma^2\end{cases} {E(X)=σE(Y)+μ=μD(X)=σ2D(Y)=σ2

  • 线性性质

    • X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),当 b ≠ 0 b\ne 0 b=0 时,有 Y = a + b X ∼ N ( a + b μ , b 2 σ 2 ) Y=a+bX\sim N(a+b\mu,b^2\sigma^2) Y=a+bXN(a+bμ,b2σ2)

    • 正态分布可加性

      • 两变量: X , Y X,Y X,Y 相互独立, X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2) XN(μ1,σ12),YN(μ2,σ22),则 Z = X + Y ∼ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) \color{red}Z=X+Y\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) Z=X+YN(μ1+μ2,σ12+σ22)

      • 一般形式: X i X_i Xi 之间相互独立, X i ∼ N ( μ i , σ i 2 ) , C i X_i\sim N(\mu_i,\sigma_i^2),C_i XiN(μi,σi2),Ci 为常数, i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n,则 Z = ∑ i = 1 n C i X i ∼ N ( ∑ i = 1 n C i μ i , ∑ i = 1 n C i 2 σ i 2 ) \color{red}Z=\sum\limits_{i=1}^n C_iX_i\sim N\left(\sum\limits_{i=1}^n C_i\mu_i,\sum\limits_{i=1}^n C_i^2\sigma_i^2 \right) Z=i=1nCiXiN(i=1nCiμi,i=1nCi2σi2)

        特殊地, Z = 1 n ∑ i = 1 n X i ∼ N ( μ i , σ i 2 n ) \color{red}Z=\dfrac{1}{n} \sum\limits_{i=1}^n X_i\sim N\left(\mu_i,\dfrac{\sigma_i^2}{n} \right) Z=n1i=1nXiN(μi,nσi2),当 n → ∞ n\rightarrow \infty n D ( Z ) = σ 2 n → 0 D(Z)=\dfrac{\sigma^2}{n}\rightarrow 0 D(Z)=nσ20,表明样本量增加,样本趋于稳定(信息熵)。

    • 3 σ 3\sigma 3σ 原则 F ( 3 ) − F ( − 3 ) = 99.73 % , F ( 2 ) − F ( − 2 ) = 95.46 % F(3)-F(-3)=99.73\%,F(2)-F(-2)=95.46\% F(3)F(3)=99.73%F(2)F(2)=95.46%

5.3 二维正态分布

研究高维数据,其实是研究协方差矩阵(实对称矩阵)高维正态分布&矩阵向量

  • 二维正态分布:当 f ( x , y ) = exp ⁡ { − t 1 2 − 2 r t 1 t 2 + t 2 2 2 ( 1 − r 2 ) } 2 π σ 1 σ 2 1 − r 2 , ( x , y ) ∈ R 2 f(x,y)=\dfrac{\exp \left\{-\dfrac{t_1^2-2rt_1t_2+t_2^2}{2(1-r^2)}\right\}}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}},(x,y)\in R^2 f(x,y)=2πσ1σ21r2 exp{2(1r2)t122rt1t2+t22},(x,y)R2,其中 t 1 = x − μ 1 σ 1 , t 2 = y − μ 2 σ 2 t_1=\dfrac{x-\mu_1}{\sigma_1},t_2=\dfrac{y-\mu_2}{\sigma_2} t1=σ1xμ1,t2=σ2yμ2 时,记为 ( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; r ) \color{red}(X,Y)\sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;r) (X,Y)N(μ1,μ2;σ12,σ22;r),其中 r r r 表示相关系数。
    • 性质
      1. 边缘分布是正态 X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2) XN(μ1,σ12),YN(μ2,σ22)
      2. 条件分布是正态 Y ∣ X = x ∼ N ( μ 2 + r σ 2 σ 1 ( x − μ 1 ) , σ 2 2 ( 1 − r 2 ) ) Y|X=x\sim N(\mu_2+r\dfrac{\sigma_2}{\sigma_1}(x-\mu_1),\sigma_2^2(1-r^2)) YX=xN(μ2+rσ1σ2(xμ1),σ22(1r2))
      3. ( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; r ) (X,Y)\sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;r) (X,Y)N(μ1,μ2;σ12,σ22;r),则 X , Y X,Y X,Y 相互独立    ⟺    r = 0 \iff r=0 r=0 (不相关——没有交叉项,二次型可拆开)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值