Sora 最全面的技术报告

OpenAI的新型视频生成模型Sora展示了强大的视频和图像生成能力,通过统一表示和扩散Transformer技术,它能生成不同尺寸、时长和分辨率的视频。Sora的潜力在于模拟物理和数字世界,以及物体与环境的互动,预示着未来高性能模拟器的发展方向。
摘要由CSDN通过智能技术生成

​2024年2月16日OpenAI用一个文生视频大模型Sora生成的一分钟长的视频再次震惊了世界。一分钟长的视频,是更漫长的征程的开端。OpenAI称他们所做的事情,是构建一个“物理世界的通用模拟器”。

本文主要对OpenAI官网提供的技术报告进行介绍,报告主要提供了训练Sora的方法,以及对其能力和局限性的定性评估。技术报告的13位作者中,有4位华人。报告明确地说,不提供模型和实现细节。尤其是公众和监管者最关注的数据来源。但是,这篇报告所列举的32篇参考论文,已经提供了所有的方法和技术。

技术报告重点

本技术报告重点关注(1)将所有类型的视觉数据转化为统一表示的方法,从而能够大规模训练生成模型,以及(2)对 Sora 的能力和局限性进行定性评估。

许多先前的工作已经研究了使用各种方法对视频数据进行生成建模,包括循环网络、1 ,2 ,3生成对抗网络,4 ,5 ,6 ,7自回归变压器,8 ,9和扩散模型。10 ,11,12这些研究通常关注一小类视觉数据、较短的视频或固定大小的视频。Sora 是视觉数据的通用模型,它可以生成不同时长、长宽比和分辨率的视频和图像,最多可达一分钟的高清视频。

将视觉数据转化为补丁

我们从大型语言模型中获得灵感,这些模型通过互联网规模数据的训练来获得通用能力。13、14研究LLM 范式的成功部分归功于token的使用,这些token优雅地统一了文本代码、数学和各种自然语言的不同模式。在这项工作中,我们考虑视觉数据的生成模型如何继承这些好处。LLM 有文本标记,而 Sora 有视觉。此前,补丁已被证明是视觉数据模型的有效表示。15,16,17,18研究发现补丁是一种高度可扩展且有效的表示形式,可用于在不同类型的视频和图像上训练生成模型。

在较高的层次上,我们首先将视频压缩到较低维的潜在空间,将视频转换为补丁,然后将表示分解为时空补丁。

视频压缩网络

我们训练一个降低视觉数据维度的网络。20该网络将原始视频作为输入并输出在时间和空间上压缩的潜在表示。Sora 在这个压缩的潜在空间中接受训练并随后生成视频。我们还训练了相应的解码器模型,将生成的潜伏映射回像素空间。

时空潜伏斑块

给定一个压缩的输入视频,我们提取一系列时空补丁,充当transformer token。该方案也适用于图像,因为图像只是具有单帧的视频。我们基于补丁的表示使 Sora 能够对不同分辨率、持续时间和长宽比的视频和图像进行训练。在推理时,我们可以通过在适当大小的网格中排列随机初始化的补丁来控制生成视频的大小。

用于视频生成的缩放transformer

Sora是一个扩散模型,研究见21、22、23、24、25; 给定输入噪声补丁(以及文本提示等调节信息),它被训练来预测原始的“干净”补丁。重要的是,Sora 是一个扩散transformer。论文26研究Transformer 在各个领域都表现出了卓越的扩展特性,包括语言建模(论文13、14)、计算机视觉(论文15 ,16 ,17,18)和图像生成(27,28 ,29)。

在这项工作中,我们发现扩散transformer也可以有效地缩放为视频模型。下面,我们展示了训练过程中具有固定种子和输入的视频样本的比较。随着训练计算的增加,样本质量显着提高。

可变的持续时间、分辨率、宽高比

过去的图像和视频生成方法通常会将视频调整大小、裁剪或修剪为标准尺寸,例如,分辨率为 256x256 的 4 秒视频。我们发现,对原始大小的数据进行训练有几个好处。

采样灵活性

Sora 可以采样宽屏 1920x1080p 视频、垂直 1080x1920 视频以及介于两者之间的所有视频。这使得 Sora 可以直接以其原生宽高比为不同设备创建内容。它还使我们能够在以全分辨率生成之前快速以较低尺寸制作原型内容 - 所有这些都使用相同的模型。

改进的框架和构图

我们根据经验发现,以原始长宽比对视频进行训练可以改善构图和取景。我们将 Sora 与将所有训练视频裁剪为正方形的模型版本进行比较,这是训练生成模型时的常见做法。在方形作物(左)上训练的模型有时会生成仅部分可见主体的视频。相比之下,Sora(右)的视频的取景效果有所改善。

语言理解

训练文本到视频生成系统需要大量带有相应文本字幕的视频。我们应用了 DALL·E 3 中引入的重新字幕技术(论文30)到视频。我们首先训练一个高度描述性的字幕生成器模型,然后使用它为训练集中的所有视频生成文本字幕。我们发现,对高度描述性视频字幕进行训练可以提高文本保真度以及视频的整体质量。

与 DALL·E 3 类似,我们还利用 GPT 将简短的用户提示转换为较长的详细字幕,然后发送到视频模型。这使得 Sora 能够生成准确遵循用户提示的高质量视频。

通过图像和视频进行提示

上面的所有结果都显示文本到视频的示例。但 Sora 也可以通过其他输入进行提示,例如预先存在的图像或视频。此功能使 Sora 能够执行各种图像和视频编辑任务 - 创建完美的循环视频、动画静态图像、及时向前或向后扩展视频等。

DALL·E 图像动画

Sora 能够生成提供图像和提示作为输入的视频。下面我们展示基于DALL·E 2生成的示例视频(论文31)和达尔·E 3(论文30)图片。

扩展生成的视频

Sora 还能够在时间上向前或向后扩展视频。我们可以使用此方法向前和向后扩展视频以产生无缝的无限循环。

视频到视频编辑

扩散模型启用了多种根据文本提示编辑图像和视频的方法。下面我们应用其中一种方法,SDEdit,(论文32)到Sora 。这项技术使 Sora 能够零镜头地改变输入视频的风格和环境。

连接视频

我们还可以使用 Sora 在两个输入视频之间逐渐进行插值,从而在具有完全不同主题和场景构成的视频之间创建无缝过渡。

图像生成能力

Sora 还能够生成图像。我们通过在时间范围为一帧的空间网格中排列高斯噪声块来实现这一点。该模型可以生成各种尺寸的图像,分辨率高达 2048x2048。

新兴的模拟功能

我们发现,视频模型在大规模训练时表现出许多有趣的新兴功能。这些功能使 Sora 能够模拟现实世界中人、动物和环境的某些方面。这些属性的出现对 3D、物体等没有任何明确的归纳偏差——它们纯粹是尺度现象。

3D 一致性。Sora 可以生成带有动态摄像机运动的视频。随着摄像机的移动和旋转,人和场景元素在三维空间中一致移动。

远程相干性和物体持久性。视频生成系统面临的一个重大挑战是在采样长视频时保持时间一致性。我们发现 Sora 通常(尽管并非总是)能够有效地对短期和长期依赖关系进行建模。例如,我们的模型可以保留人、动物和物体,即使它们被遮挡或离开框架。同样,它可以在单个样本中生成同一角色的多个镜头,并在整个视频中保持其外观。

与世界互动。Sora 有时可以用简单的方式模拟影响世界状况的动作。例如,画家可以在画布上留下新的笔触,并随着时间的推移而持续存在,或者一个人可以吃汉堡并留下咬痕。

模拟数字世界。Sora 还能够模拟人工过程——一个例子是视频游戏。Sora 可以同时通过基本策略控制《我的世界》中的玩家,同时以高保真度渲染世界及其动态。这些能力可以通过用提及“我的世界”的标题提示 Sora 来零射击。

这些功能表明,视频模型的持续扩展是开发物理和数字世界以及生活在其中的物体、动物和人的高性能模拟器的一条有前途的道路。

Sora 今天所拥有的能力表明,视频模型的持续扩展是开发物理和数字世界以及生活在其中的物体、动物和人的强大模拟器的一条有前途的道路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值