A 国一共发行了几种不同面值的硬币,分别是面值 1 元,2 元,5 元,10 元,20 元,50 元, 100 元。假设每种面值的硬币数量是无限的,现在你想用这些硬币凑出总面值为 n 的硬币, 同时你想让选出的硬币中,不同的面值种类尽可能多;在面值种类尽可能多的情况下,你想 让选择的硬币总数目尽可能多,请问应该怎么选择硬币呢?
输入描述:
第一行包含一个数字?,表示要凑出的面值。1 ≤ ? ≤ 109
输出描述:
输出两个整数,分别表示最多能有多少种类型的硬币以及在类型最多的情况下最多能用上多少枚硬币。
示例1
输入
3
输出
2 2
示例2
输入
10
输出
3 5
思路:
为了在面值种类尽可能多的前提下,想让选择的硬币数尽可能多,我们采取的策略为:从下到大,每种面值的硬币用一个,剩下的全部用面值为1的硬币填充。
代码:
#include <iostream>
using namespace std;
int typeNum = 0; //统计面值种类
long long coinNum = 0; //统计一共使用的硬币数
int value[] = {1,2,5,10,20,50,100}; //硬币面值数组
int main(){
long long n;
cin >> n; //输入总面值
int remain = n; //从小到大每加一个面值后剩余的面值
int i = 0; //既是遍历的序号同时也可以统计不同类型的面值的数目
for ( ; i < 7 && value[i] <=remain;i++) //也是从零开始,一共7种面值,每次面值value[i]要
//小于等于remian才可以继续下去
{
coinNum += value[i]; //统计不同类型面值总和
if (coinNum <= n) //此时不超过总面值
{
typeNum++; //面值类型加1
remain = n - coinNum; //此时剩余的面值数
}
}
cout << typeNum << " " << i + remain * 1; //前者是类型数目,后者是不同类型的面值数目+
//remain个面值为一的硬币
return 0;
}