win10安装Tensorflow(2.10-)使用最新cuda(12+),cudnn(8.9+)

# tensorflow在2.11+版本后不再支持原生windows的GPU:
https://blog.tensorflow.org/2022/09/whats-new-in-tensorflow-210.html

# 1、首先,在windows安装好最新的GPU环境:
https://blog.csdn.net/sinat_20174131/article/details/121781420?spm=1001.2014.3001.5501

# 2、下载安装tensorflow(忘了是conda还是pip,哈哈哈,建议先试pip)
https://blog.csdn.net/sinat_20174131/article/details/130491478?spm=1001.2014.3001.5501

# 3、测试即可!(tensorflow2.10的官方指导cuda版本是11.2,当然要听他的,但我们要有探索精神!)
# 搞定!(看图)

windows_tensorflow_gpu

自编译tensorflow: 1.python3.5,tensorflow1.12; 2.支持cuda10.0,cudnn7.3.1,TensorRT-5.0.2.6-cuda10.0-cudnn7.3; 3.无mkl支持; 软硬件硬件环境:Ubuntu16.04,GeForce GTX 1080 TI 置信息: hp@dla:~/work/ts_compile/tensorflow$ ./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown". You have bazel 0.19.1 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10.0]: Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: Do you wish to build TensorFlow with TensorRT support? [y/N]: y TensorRT support will be enabled for TensorFlow. Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]://home/hp/bin/TensorRT-5.0.2.6-cuda10.0-cudnn7.3/targets/x86_64-linux-gnu Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1,6.1,6.1]: Do you want to use clang as CUDA compiler? [y/N]: nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=monolithic # Config for mostly static monolithic build. --config=gdr # Build with GDR support. --config=verbs # Build with libverbs support. --config=ngraph # Build with Intel nGraph support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. Preconfigured Bazel build configs to DISABLE default on features: --config=noaws # Disable AWS S3 filesystem support. --config=nogcp # Disable GCP support. --config=nohdfs # Disable HDFS support. --config=noignite # Disable Apacha Ignite support. --config=nokafka # Disable Apache Kafka support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished 编译: bazel build --config=opt --verbose_failures //tensorflow/tools/pip_package:build_pip_package 卸载已有tensorflow: hp@dla:~/temp$ sudo pip3 uninstall tensorflow 安装自己编译的成果: hp@dla:~/temp$ sudo pip3 install tensorflow-1.12.0-cp35-cp35m-linux_x86_64.whl
<think>好的,我需要帮助用户确定在Python 3.10环境下安装CUDA Toolkit 11.8cuDNN 8.1后能否成功安装TensorFlow 2.10,以及相关的依赖关系,特别是numpy的版本要求。 首先,我应该先查阅TensorFlow官方文档,看看TensorFlow 2.10支持的CUDAcuDNN版本。根据之前的经验,TensorFlow每个版本都有对应的CUDAcuDNN要求。比如,TensorFlow 2.10可能需要CUDA 11.2cuDNN 8.1,但用户提到的是CUDA 11.8cuDNN 8.1,这可能需要验证兼容性。 然后,检查Python版本的支持情况。用户使用Python 3.10,而TensorFlow 2.10是否支持这个版本呢?我记得TensorFlow版本通常会支持多个Python版本,但需要确认官方文档中的具体说明。 接下来是numpy的依赖关系。TensorFlow通常会依赖特定版本的numpy,用户可能需要安装TensorFlow 2.10兼容的numpy版本。比如,某些版本TensorFlow可能要求numpy>=1.20,但需要具体确认。 另外,用户的CUDA Toolkit版本是11.8,而TensorFlow 2.10可能官方支持的是更低的版本,比如CUDA 11.2。这种情况下,用户可能需要调整CUDA版本或者寻找非官方构建的TensorFlow版本,或者考虑升级到更高版本TensorFlow,如2.13或更高,这些版本可能支持更新的CUDA。 还要考虑cuDNN版本是否与CUDA Toolkit匹cuDNN 8.1通常需要CUDA 11.x,但具体到11.8是否兼容需要查看NVIDIA的文档。 如果用户的CUDAcuDNN版本TensorFlow 2.10不兼容,可能需要建议他们安装兼容的CUDA版本,或者升级TensorFlow到支持CUDA 11.8版本。例如,TensorFlow 2.11或更高版本可能开始支持更新的CUDA版本。 另外,用户的环境是Python 3.10,需要确认TensorFlow 2.10是否支持该Python版本。根据TensorFlow的发布说明,Python 3.10的支持可能从某个特定版本开始,如果TensorFlow 2.10不支持,可能需要降级Python或升级TensorFlow。 最后,关于numpy的依赖,需要确保安装的numpy版本TensorFlow 2.10兼容。通常,TensorFlow会指定兼容的numpy范围,可以通过pip安装时自动解决依赖,但有时候需要手动指定版本以避免冲突。 总结一下,可能需要用户检查TensorFlow 2.10的官方系统要求,确认CUDAcuDNN和Python版本的兼容性,并调整相应的安装版本,或者建议使用更高版本TensorFlow以支持更新的CUDA Toolkit。</think>根据TensorFlow官方文档和硬件依赖关系,TensorFlow 2.10的兼容性如下: ### 1. **Python版本兼容性** - TensorFlow 2.10官方支持Python 3.7-3.10[^1],因此Python 3.10环境可正常安装。 ### 2. **CUDAcuDNN依赖** - TensorFlow 2.10需要**CUDA 11.2**和**cuDNN 8.1**(需与CUDA版本)。 - 您计划使用**CUDA 11.8**和**cuDNN 8.1**,但CUDA 11.8超出了TensorFlow 2.10的官方支持范围。需注意: - 若强行安装,可能会因驱动版本不匹导致`libcudart.so`或`libcudnn`加载失败。 - 建议降级至CUDA 11.2或升级TensorFlow至支持CUDA 11.8版本(如TensorFlow 2.13+)。 ### 3. **依赖库版本要求** - **numpy**: TensorFlow 2.10要求`numpy>=1.20`[^1]。若环境中有旧版本numpy,需更新: ```bash pip install numpy>=1.20 ``` - **其他依赖**: Protobuf(需≥3.20.3)、absl-py等会自动安装。 ### 4. **验证安装** 安装后运行以下代码验证: ```python import tensorflow as tf print(tf.__version__) # 应输出2.10.x print(tf.config.list_physical_devices(&#39;GPU&#39;)) # 检查GPU是否识别 ``` ### 5. **替代方案** - 若需使用CUDA 11.8,建议安装**TensorFlow 2.13**(支持CUDA 11.8cuDNN 8.6): ```bash pip install tensorflow==2.13 ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值