2025年最新 Tensorflow paddlepaddle与CUDA 、Python、cuDNN的版本对应表 一一对应关系,torch和CUDA的对应表

cuda版本查看  nvcc -V

cudnn 版本查看

find / -name cudnn_version.h

找到对应的文件


find: '/proc/tty/driver': Permission denied
/usr/include/cudnn_version.h
/opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_version.h
find: '/root': Permission denied
find: '/var/lib/apt/lists/partial': Permission denied
find: '/var/lib/private': Permission denied
find: '/var/log/private': Permission denied
find: '/var/cache/ldconfig': Permission denied
find: '/var/cache/apt/archives/partial': Permission denied
find: '/var/cache/private': Permission denied
find: '/run/sudo': Permission denied
/home/aistudio/external-libraries/nvidia/cudnn/include/cudnn_version.h
find: '/etc/ssl/private': Permission denied

-

baidu aistutdiou是

cd /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages/nvidia/cudnn/include

cudnn_version.h | grep CUDNN_MAJOR -A 2

1. 官方配置

官网除了中文(包括简体和繁体)之外的才更新到了TensorFlow 2.18.0,中文版只更新到了2.6.0,所以要想看到下面的内容需要进入官网之后右上角将语言选择为English

经过测试的构建配置

Linux
CPU
VersionPython versionCompilerBuild tools
tensorflow-2.18.03.9-3.12Clang 17.0.6Bazel 6.5.0
tensorflow-2.17.03.9-3.12Clang 17.0.6Bazel 6.5.0
tensorflow-2.16.13.9-3.12Clang 17.0.6Bazel 6.5.0
tensorflow-2.15.03.9-3.11Clang 16.0.0Bazel 6.1.0
tensorflow-2.14.03.9-3.11Clang 16.0.0Bazel 6.1.0
tensorflow-2.13.03.8-3.11Clang 16.0.0Bazel 5.3.0
tensorflow-2.12.03.8-3.11GCC 9.3.1Bazel 5.3.0
tensorflow-2.11.03.7-3.10GCC 9.3.1Bazel 5.3.0
tensorflow-2.10.03.7-3.10GCC 9.3.1Bazel 5.1.1
tensorflow-2.9.03.7-3.10GCC 9.3.1Bazel 5.0.0
tensorflow-2.8.03.7-3.10GCC 7.3.1Bazel 4.2.1
tensorflow-2.7.03.7-3.9GCC 7.3.1Bazel 3.7.2
tensorflow-2.6.03.6-3.9GCC 7.3.1Bazel 3.7.2
tensorflow-2.5.03.6-3.9GCC 7.3.1Bazel 3.7.2
tensorflow-2.4.03.6-3.8GCC 7.3.1Bazel 3.1.0
tensorflow-2.3.03.5-3.8GCC 7.3.1Bazel 3.1.0
tensorflow-2.2.03.5-3.8GCC 7.3.1Bazel 2.0.0
tensorflow-2.1.02.7, 3.5-3.7GCC 7.3.1Bazel 0.27.1
tensorflow-2.0.02.7, 3.3-3.7GCC 7.3.1Bazel 0.26.1
tensorflow-1.15.02.7, 3.3-3.7GCC 7.3.1Bazel 0.26.1
tensorflow-1.14.02.7, 3.3-3.7GCC 4.8Bazel 0.24.1
tensorflow-1.13.12.7, 3.3-3.7GCC 4.8Bazel 0.19.2
tensorflow-1.12.02.7, 3.3-3.6GCC 4.8Bazel 0.15.0
tensorflow-1.11.02.7, 3.3-3.6GCC 4.8Bazel 0.15.0
tensorflow-1.10.02.7, 3.3-3.6GCC 4.8Bazel 0.15.0
tensorflow-1.9.02.7, 3.3-3.6GCC 4.8Bazel 0.11.0
tensorflow-1.8.02.7, 3.3-3.6GCC 4.8Bazel 0.10.0
tensorflow-1.7.02.7, 3.3-3.6GCC 4.8Bazel 0.10.0
tensorflow-1.6.02.7, 3.3-3.6GCC 4.8Bazel 0.9.0
tensorflow-1.5.02.7, 3.3-3.6GCC 4.8Bazel 0.8.0
tensorflow-1.4.02.7, 3.3-3.6GCC 4.8Bazel 0.5.4
tensorflow-1.3.02.7, 3.3-3.6GCC 4.8Bazel 0.4.5
tensorflow-1.2.02.7, 3.3-3.6GCC 4.8Bazel 0.4.5
tensorflow-1.1.02.7, 3.3-3.6GCC 4.8Bazel 0.4.2
tensorflow-1.0.02.7, 3.3-3.6GCC 4.8Bazel 0.4.2
GPU
VersionPython versionCompilerBuild toolscuDNNCUDA
tensorflow-2.18.03.9-3.12Clang 17.0.6Bazel 6.5.09.312.5
tensorflow-2.17.03.9-3.12Clang 17.0.6Bazel 6.5.08.912.3
tensorflow-2.16.13.9-3.12Clang 17.0.6Bazel 6.5.08.912.3
tensorflow-2.15.03.9-3.11Clang 16.0.0Bazel 6.1.08.912.2
tensorflow-2.14.03.9-3.11Clang 16.0.0Bazel 6.1.08.711.8
tensorflow-2.13.03.8-3.11Clang 16.0.0Bazel 5.3.08.611.8
tensorflow-2.12.03.8-3.11GCC 9.3.1Bazel 5.3.08.611.8
tensorflow-2.11.03.7-3.10GCC 9.3.1Bazel 5.3.08.111.2
tensorflow-2.10.03.7-3.10GCC 9.3.1Bazel 5.1.18.111.2
tensorflow-2.9.03.7-3.10GCC 9.3.1Bazel 5.0.08.111.2
tensorflow-2.8.03.7-3.10GCC 7.3.1Bazel 4.2.18.111.2
tensorflow-2.7.03.7-3.9GCC 7.3.1Bazel 3.7.28.111.2
tensorflow-2.6.03.6-3.9GCC 7.3.1Bazel 3.7.28.111.2
tensorflow-2.5.03.6-3.9GCC 7.3.1Bazel 3.7.28.111.2
tensorflow-2.4.03.6-3.8GCC 7.3.1Bazel 3.1.08.011.0
tensorflow-2.3.03.5-3.8GCC 7.3.1Bazel 3.1.07.610.1
tensorflow-2.2.03.5-3.8GCC 7.3.1Bazel 2.0.07.610.1
tensorflow-2.1.02.7, 3.5-3.7GCC 7.3.1Bazel 0.27.17.610.1
tensorflow-2.0.02.7, 3.3-3.7GCC 7.3.1Bazel 0.26.17.410.0
tensorflow_gpu-1.15.02.7, 3.3-3.7GCC 7.3.1Bazel 0.26.17.410.0
tensorflow_gpu-1.14.02.7, 3.3-3.7GCC 4.8Bazel 0.24.17.410.0
tensorflow_gpu-1.13.12.7, 3.3-3.7GCC 4.8Bazel 0.19.27.410.0
tensorflow_gpu-1.12.02.7, 3.3-3.6GCC 4.8Bazel 0.15.079
tensorflow_gpu-1.11.02.7, 3.3-3.6GCC 4.8Bazel 0.15.079
tensorflow_gpu-1.10.02.7, 3.3-3.6GCC 4.8Bazel 0.15.079
tensorflow_gpu-1.9.02.7, 3.3-3.6GCC 4.8Bazel 0.11.079
tensorflow_gpu-1.8.02.7, 3.3-3.6GCC 4.8Bazel 0.10.079
tensorflow_gpu-1.7.02.7, 3.3-3.6GCC 4.8Bazel 0.9.079
tensorflow_gpu-1.6.02.7, 3.3-3.6GCC 4.8Bazel 0.9.079
tensorflow_gpu-1.5.02.7, 3.3-3.6GCC 4.8Bazel 0.8.079
tensorflow_gpu-1.4.02.7, 3.3-3.6GCC 4.8Bazel 0.5.468
tensorflow_gpu-1.3.02.7, 3.3-3.6GCC 4.8Bazel 0.4.568
tensorflow_gpu-1.2.02.7, 3.3-3.6GCC 4.8Bazel 0.4.55.18
tensorflow_gpu-1.1.02.7, 3.3-3.6GCC 4.8Bazel 0.4.25.18
tensorflow_gpu-1.0.02.7, 3.3-3.6GCC 4.8Bazel 0.4.25.18
macOS
CPU
VersionPython versionCompilerBuild tools
tensorflow-2.16.13.9-3.12Clang from Xcode 13.6Bazel 6.5.0
tensorflow-2.15.03.9-3.11Clang from xcode 10.15Bazel 6.1.0
tensorflow-2.14.03.9-3.11Clang from xcode 10.15Bazel 6.1.0
tensorflow-2.13.03.8-3.11Clang from xcode 10.15Bazel 5.3.0
tensorflow-2.12.03.8-3.11Clang from xcode 10.15Bazel 5.3.0
tensorflow-2.11.03.7-3.10Clang from xcode 10.14Bazel 5.3.0
tensorflow-2.10.03.7-3.10Clang from xcode 10.14Bazel 5.1.1
tensorflow-2.9.03.7-3.10Clang from xcode 10.14Bazel 5.0.0
tensorflow-2.8.03.7-3.10Clang from xcode 10.14Bazel 4.2.1
tensorflow-2.7.03.7-3.9Clang from xcode 10.11Bazel 3.7.2
tensorflow-2.6.03.6-3.9Clang from xcode 10.11Bazel 3.7.2
tensorflow-2.5.03.6-3.9Clang from xcode 10.11Bazel 3.7.2
tensorflow-2.4.03.6-3.8Clang from xcode 10.3Bazel 3.1.0
tensorflow-2.3.03.5-3.8Clang from xcode 10.1Bazel 3.1.0
tensorflow-2.2.03.5-3.8Clang from xcode 10.1Bazel 2.0.0
tensorflow-2.1.02.7, 3.5-3.7Clang from xcode 10.1Bazel 0.27.1
tensorflow-2.0.02.7, 3.5-3.7Clang from xcode 10.1Bazel 0.27.1
tensorflow-2.0.02.7, 3.3-3.7Clang from xcode 10.1Bazel 0.26.1
tensorflow-1.15.02.7, 3.3-3.7Clang from xcode 10.1Bazel 0.26.1
tensorflow-1.14.02.7, 3.3-3.7Clang from xcodeBazel 0.24.1
tensorflow-1.13.12.7, 3.3-3.7Clang from xcodeBazel 0.19.2
tensorflow-1.12.02.7, 3.3-3.6Clang from xcodeBazel 0.15.0
tensorflow-1.11.02.7, 3.3-3.6Clang from xcodeBazel 0.15.0
tensorflow-1.10.02.7, 3.3-3.6Clang from xcodeBazel 0.15.0
tensorflow-1.9.02.7, 3.3-3.6Clang from xcodeBazel 0.11.0
tensorflow-1.8.02.7, 3.3-3.6Clang from xcodeBazel 0.10.1
tensorflow-1.7.02.7, 3.3-3.6Clang from xcodeBazel 0.10.1
tensorflow-1.6.02.7, 3.3-3.6Clang from xcodeBazel 0.8.1
tensorflow-1.5.02.7, 3.3-3.6Clang from xcodeBazel 0.8.1
tensorflow-1.4.02.7, 3.3-3.6Clang from xcodeBazel 0.5.4
tensorflow-1.3.02.7, 3.3-3.6Clang from xcodeBazel 0.4.5
tensorflow-1.2.02.7, 3.3-3.6Clang from xcodeBazel 0.4.5
tensorflow-1.1.02.7, 3.3-3.6Clang from xcodeBazel 0.4.2
tensorflow-1.0.02.7, 3.3-3.6Clang from xcodeBazel 0.4.2
GPU
VersionPython versionCompilerBuild toolscuDNNCUDA
tensorflow_gpu-1.1.02.7, 3.3-3.6Clang from xcodeBazel 0.4.25.18
tensorflow_gpu-1.0.02.7, 3.3-3.6Clang from xcodeBazel 0.4.25.18

注意:从 TF 2.11 开始,Windows平台不再支持 CUDA 构建。要在 Windows 上使用 TensorFlow GPU,您需要在 WSL2 中构建/安装 TensorFlow,或者使用 tensorflow-cpu 配合 TensorFlow-DirectML-Plugin。

经过测试的构建配置

Windows
CPU
VersionPython versionCompilerBuild tools
tensorflow-2.18.03.9-3.12CLANG 17.0.6Bazel 6.5.0
tensorflow-2.17.03.9-3.12CLANG 17.0.6Bazel 6.5.0
tensorflow-2.16.13.9-3.12CLANG 17.0.6Bazel 6.5.0
tensorflow-2.15.03.9-3.11MSVC 2019Bazel 6.1.0
tensorflow-2.14.03.9-3.11MSVC 2019Bazel 6.1.0
tensorflow-2.12.03.8-3.11MSVC 2019Bazel 5.3.0
tensorflow-2.11.03.7-3.10MSVC 2019Bazel 5.3.0
tensorflow-2.10.03.7-3.10MSVC 2019Bazel 5.1.1
tensorflow-2.9.03.7-3.10MSVC 2019Bazel 5.0.0
tensorflow-2.8.03.7-3.10MSVC 2019Bazel 4.2.1
tensorflow-2.7.03.7-3.9MSVC 2019Bazel 3.7.2
tensorflow-2.6.03.6-3.9MSVC 2019Bazel 3.7.2
tensorflow-2.5.03.6-3.9MSVC 2019Bazel 3.7.2
tensorflow-2.4.03.6-3.8MSVC 2019Bazel 3.1.0
tensorflow-2.3.03.5-3.8MSVC 2019Bazel 3.1.0
tensorflow-2.2.03.5-3.8MSVC 2019Bazel 2.0.0
tensorflow-2.1.03.5-3.7MSVC 2019Bazel 0.27.1-0.29.1
tensorflow-2.0.03.5-3.7MSVC 2017Bazel 0.26.1
tensorflow-1.15.03.5-3.7MSVC 2017Bazel 0.26.1
tensorflow-1.14.03.5-3.7MSVC 2017Bazel 0.24.1-0.25.2
tensorflow-1.13.03.5-3.7MSVC 2015 update 3Bazel 0.19.0-0.21.0
tensorflow-1.12.03.5-3.6MSVC 2015 update 3Bazel 0.15.0
tensorflow-1.11.03.5-3.6MSVC 2015 update 3Bazel 0.15.0
tensorflow-1.10.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.9.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.8.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.7.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.6.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.5.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.4.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.3.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.2.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.1.03.5MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.0.03.5MSVC 2015 update 3Cmake v3.6.3
GPU

注意:原生 Windows 上的 GPU 支持仅适用于 2.10 或更早版本,从 TF 2.11 开始,Windows 不支持 CUDA 构建。要在 Windows 上使用 TensorFlow GPU,您需要在 WSL2 中构建/安装 TensorFlow,或者使用 tensorflow-cpu 配合 TensorFlow-DirectML-Plugin。

VersionPython versionCompilerBuild toolscuDNNCUDA
tensorflow_gpu-2.10.03.7-3.10MSVC 2019Bazel 5.1.18.111.2
tensorflow_gpu-2.9.03.7-3.10MSVC 2019Bazel 5.0.08.111.2
tensorflow_gpu-2.8.03.7-3.10MSVC 2019Bazel 4.2.18.111.2
tensorflow_gpu-2.7.03.7-3.9MSVC 2019Bazel 3.7.28.111.2
tensorflow_gpu-2.6.03.6-3.9MSVC 2019Bazel 3.7.28.111.2
tensorflow_gpu-2.5.03.6-3.9MSVC 2019Bazel 3.7.28.111.2
tensorflow_gpu-2.4.03.6-3.8MSVC 2019Bazel 3.1.08.011.0
tensorflow_gpu-2.3.03.5-3.8MSVC 2019Bazel 3.1.07.610.1
tensorflow_gpu-2.2.03.5-3.8MSVC 2019Bazel 2.0.07.610.1
tensorflow_gpu-2.1.03.5-3.7MSVC 2019Bazel 0.27.1-0.29.17.610.1
tensorflow_gpu-2.0.03.5-3.7MSVC 2017Bazel 0.26.17.410
tensorflow_gpu-1.15.03.5-3.7MSVC 2017Bazel 0.26.17.410
tensorflow_gpu-1.14.03.5-3.7MSVC 2017Bazel 0.24.1-0.25.27.410
tensorflow_gpu-1.13.03.5-3.7MSVC 2015 update 3Bazel 0.19.0-0.21.07.410
tensorflow_gpu-1.12.03.5-3.6MSVC 2015 update 3Bazel 0.15.07.29.0
tensorflow_gpu-1.11.03.5-3.6MSVC 2015 update 3Bazel 0.15.079
tensorflow_gpu-1.10.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.9.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.8.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.7.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.6.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.5.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.4.03.5-3.6MSVC 2015 update 3Cmake v3.6.368
tensorflow_gpu-1.3.03.5-3.6MSVC 2015 update 3Cmake v3.6.368
tensorflow_gpu-1.2.03.5-3.6MSVC 2015 update 3Cmake v3.6.35.18
tensorflow_gpu-1.1.03.5MSVC 2015 update 3Cmake v3.6.35.18
tensorflow_gpu-1.0.03.5MSVC 2015 update 3Cmake v3.6.35.18

2. 第三方验证配置

 2.1 官方TensorFlow

贴几个官网没有的配置表
VersionPython versionCompilerBuild toolscuDNNCUDA
tensorflow-2.93.88.2.111.3.1
tensorflow-gpu-2.0.03.77.6.5(亲测)10.0.130
tensorflow-gpu==2.0.0-alpha07.5.110.0
tensorflow_gpu-1.15.03.7.117.6.010.0.130
tensorflow_gpu-1.15.03.7.127.6.5.3210.0.130

上面的小版本号个人认为可以忽略不计,可以理解为下表的示例内容,需要注意的是TF1.x已经停止更新故对新硬件(主要是RTX30系列之后的显卡)不支持,故需要使用Nvidia-TensorFlow代替官方版本。

VersionPython versionCompilerBuild toolscuDNNCUDA
tensorflow_gpu-1.15.03.77.610.0

2.2 Nvidia-TensorFlow

windows 安装方法


人工智能
9 篇文章12 订阅
订阅专栏
目录

前言

一、安装python(也可以用conda安装)

二、安装VS的C++环境

三、安装CUDA

2.1、检查环境

2.2、 查看自己是否有NVIDA显卡驱动程序

2.3、查看GPU显卡所支持的CUDA版本

2.4、安装对应版本的CUDA安装包

2.5、选择对应的系统

2.6、运行安装包

2.7、配置Cuda的环境变量

2.8、查看是CUDA是否安装成功

2.9、验证deviceQuery和bandwidthTest

四、安装pytorch

五、运行效果

前言
一年前,安装过cuda,觉得并不难,就没有记录。

这次安装还算顺利,就是在找资料的时候,浪费了不少时间

这次就记录下来,方便以后再次安装

总结安装程序:

1、安装python环境

2、安装VS的C++环境(因为CUDA在安装时,需要VS的里面的工具包来编译。)

3、安装cuda

4、安装pytorch

一、安装python(也可以用conda安装)
直接官网下载:
Python Releases for Windows | Python.org
The official home of the Python Programming Language
https://www.python.org/downloads/windows/

我下载的版本——蓝奏云下载(python3.9.5):python-3.9.5-amd64.zip - 蓝奏云

进入命令行,输入python,出现这样的界面则表示成功安装

使用conda(Anaconda)的话,可以看看b站的教程(这里就不赘述了)

二、安装VS的C++环境
如果你想用其他版本可以去官网下载:
Downloads & Keys - Visual Studio Subscriptions
https://my.visualstudio.com/Downloads?q=Visual%20Studio%202022

我下载的是:社区免费版VS 2022——VisualStudioSetup.exe

蓝奏云下载2022社区免费版:https://wwm.lanzout.com/i7xQY1ods8xi 
密码:6epa

运行安装程序:

然后找到C++桌面开发

建议安装到专门放软件的盘,不要安装到系统盘C,然后点击开始进行安装

安装完后,电脑需要重启,重启后就可以使用了

三、安装CUDA
在安装前,可以先看看这个博客:
理清GPU、CUDA、CUDA Toolkit、cuDNN关系以及下载安装_cudatoolkit-CSDN博客
https://blog.csdn.net/qq_42406643/article/details/109545766

2.1、检查环境
检查是否有NVIDA的独立显卡,前面的VS是否已经安装
2.2、 查看自己是否有NVIDA显卡驱动程序
如果没有显卡的控制面板,下载安装:NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA

2.3、查看GPU显卡所支持的CUDA版本
控制面板-> 帮助-> 系统信息-> 组件-> 我的是CUDA 12.3

2.4、安装对应版本的CUDA安装包
进入官网:CUDA Toolkit Archive | NVIDIA Developer

2.5、选择对应的系统
如果用离线版本,就有3个G,这里我选择的是在线安装

2.6、运行安装包


自己选择路径:

选择——自定义安装

安装组件,全部勾选,点击下一步

自定义下载路径

建议安装到专门放软件的盘,不要安装到系统盘C

然后慢慢等

之后一直下一步就行了~

2.7、配置Cuda的环境变量
安装完成后,就需要我们配置Cuda的环境变量了

他会自己添加的变量:

先找到我们自定义安装的cuda文件夹

然后添加两个环境变量

相当于,总共有这4个文件夹的~

2.8、查看是CUDA是否安装成功
Win + R 打开cmd ,输入命令:nvcc --version

2.9、验证deviceQuery和bandwidthTest
在命令窗口运行文件

ok!CUDA搞定啦~

四、安装pytorch
我的电脑的cuda版本是12.3的,准备安装pytorch!
目前,官网上没有直接支持cuda 12.3的pytorch版本!
通过翻阅其他博客,博主说cuda是向下兼容的!
我就选择了CUDA 12.1
4.1、通过官网,选择对应版本,然后复制命令,直接下载即可!

不过在这里先pip换源

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip config set install.trusted-host mirrors.aliyun.com
同时,再设置一下超时时间,毕竟这个torch有2~3个G(这里就不赘述了,直接放链接,如果超时了,再来设置也行~)

Python——记录pip问题(解决下载慢、升级失败问题)_pip下载太慢-CSDN博客
https://blog.csdn.net/Pan_peter/article/details/129553679


安装完成~

五、运行效果
我把我之前那个项目拿来,跑一下试试~

基于YOLOv8的多端车流检测系统(用于毕设+开源)_yolov8 rtsp-CSDN博客
https://blog.csdn.net/Pan_peter/article/details/132048923

先下载其他库

报错了:type object 'Detections' has no attribute 'from_yolov8'

大佬评论:由于Detection删除了from,所以需要降级,又因为前面的sv调用,所以把supervision降级为0.6.0即可解决pip install supervision==0.6.0

感谢大佬!!!

运行项目:(20多帧,比俺之前只有几帧好多了,啊哈哈~)

用之前的训练demo包试试:

windows使用YOLOv8训练自己的模型(0基础保姆级教学)_windows10使用yolov8常见问题-CSDN博客
https://blog.csdn.net/Pan_peter/article/details/129907710


也可以正常训练

只不过这里遇到了一个小插曲:

报错:RuntimeError: DataLoader worker (pid(s) 20580, 22560, 5668, 18512, 1240, 18208, 22356) exited unexpectedly

他搞了多线程,我直接关闭他,把训练代码改为 workers=0

model.train(data='./data/cat.yaml', epochs=100, imgsz=640, workers=0)

pytorch与cuda版本对应关系汇总

pytorch与cuda版本关系
cuda版本    支持pytorch版本
cuda10.2    1.5 ~ 1.12
cuda11.0    1.7 ~ 1.7.1
cuda11.1    1.8 ~ 1.10.1
cuda11.3    1.8.1 ~ 1.12.1
cuda11.6    1.12.0 ~ 1.13.1
cuda11.7    1.13.0 ~ 2.0.1
cuda11.8    2.0.0 ~ 2.1.1
cuda12.1    2.1.0 ~ 2.1.1
cuda 与 cudnn关系
cuda版本    支持cudnn版本
cuda10.2    v7.6.5 ~ v8.7.0
cuda11.3    v8.2.0 ~ v8.9.6
pytorch 与 python关系
torch    torchvision    Python
main / nightly    main / nightly    >=3.8, <=3.11
2.0    0.15    >=3.8, <=3.11
1.13    0.14    >=3.7.2, <=3.10
1.12    0.13    >=3.7, <=3.10
1.11    0.12    >=3.7, <=3.10
1.10    0.11    >=3.6, <=3.9
1.9    0.10    >=3.6, <=3.9
1.8    0.9    >=3.6, <=3.9
1.7    0.8    >=3.6, <=3.9
1.6    0.7    >=3.6, <=3.8
1.5    0.6    >=3.5, <=3.8
1.4    0.5    ==2.7, >=3.5, <=3.8
1.3    0.4.2 / 0.4.3    ==2.7, >=3.5, <=3.7
1.2    0.4.1    ==2.7, >=3.5, <=3.7
1.1    0.3    ==2.7, >=3.5, <=3.7
<=1.0    0.2    ==2.7, >=3.5, <=3.7

————————————————

       

安装torch 支持cuda的版本

先开始去官网PyTorch

用这个官网的命令下,一直会把cpu版本的一起下下来,导致运行的时候一直cpu版本而不是gpu版本,torch.cuda.is_available()这个是false,问题很大。

重新去搜了个命令:pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
 

paddlepadlle和cuda的对应关系

Download cuDNN v8.1.1 (Feburary 26th, 2021), for CUDA 11.0,11.1 and 11.2
Download cuDNN v8.1.1 [Feburary 26th, 2021), for CUDA 10.2
Download cuDNN v8.1.0 [January 26th, 2021). for CUDA 11.0.11.1 and 11.2
Download cuDNN v8.1.0 (January 26th, 2021), for CUDA 10.2
Download cuDNN v8.0.5 [November 9th, 2020), for CUDA 11.1
Download cuDNNv8.0.5 (November 9th,2020).for CUDA 11.0
Download cuDNN v8.0.5 (November 9th, 2020),for CUDA 10.2
Download cuDNN v8.0.5 [November 9th, 2020).for CUDA 10.1
Download cuDNN v8.0.4 [September 28th,2020).for CUDA 11.1
Download cuDNN v8.0.4 [September 28th, 2020),for CUDA 11.0
Download cuDNN v8.0.4 [September 28th,2020).for CUDA 10.2
Download cuDNN v8.0.4 [September 28th, 2020].for CUDA 10.1
Download cuDNN v8.0.3 (August 26th,2020).for CUDA 11.0
Download cuDNN v8.0.3 [August 26th,2020).for CUDA 10.2
Download cuDNN v8.0.3 (August 26th,2020),for CUDA 10.1
Download cuDNN v8.0.2[Juty 24th,2020), for CUDA 11.0
Download cuDNN v8.0.2 [July 24th,2020),for CUDA 10.2

Download cuDNN v8.0.2 [July 24th,2020),for CUDA 10.1
Download cuDNN v8.0.1 RC2 [June 26th,2020), for CUDA 11.0
Download cuDNN v8.0.1 RC2 (June 26th,2020).for CUDA 10.2
Download cuDNN v7.6.5 [November 18th, 2019]. for CUDA 10.2
Download cuDNN v7.6.5 (November 5th, 2019).for CUDA 10.1
Download cuDNN v7.6.5 (November 5th, 2019),for CUDA 10.0
Download cuDNN v7.6.5 [November 5th, 2019]. for CUDA 9.2
Download cuDNN v7.6.5 [November 5th,2019), for CUDA 9.0
Download cuDNN v7.6.4 (September 27,2019), for CUDA 10.1
Download cuDNN v7.6.4 [September 27,2019). for CUDA 10.0
Download cuDNN v7.6.4 (September 27.2019]. for CUDA 9.2
Download cuDNN v7.6.4 [September 27, 2019), for CUDA 9.0
Download cuDNN v7.6.3 (August 23, 2019).for CUDA 10.1
Download cuDNN v7.6.3 [August 23,2019].for CUDA 10.0
Download cuDNN v7.6.3 (August 23,2019). for CUDA 9.2
Download cuDNN v7.6.3 [August 23,2019).for CUDA 9.0
Download cuDNN v7.6.2 [July 22,2019). for CUDA 10.1

--------

paddlepaddle-gpu==X.X.X.postXX 其中post后的两个XX分别代表CUDA版本,CUDNN版本。

paddlepaddle-gpu==1.5.1.post87 代表CUDA版本8,CUDNN版本7.X

paddlepaddle-gpu==1.5.1.post97 代表CUDA版本9,CUDNN版本7.X

paddlepaddle-gpu==1.5.1.post107 代表CUDA版本10,CUDNN版本7.X

paddlepaddle2.52 ==>cuda11.8
paddlepaddle2.62 ==>cuda12.4

python=3.7 paddlepaddle-gpu =2.4 cuda =11.7 cudnn=8.4.1

paddlepaddle-gpu2.3、cuda10.2、cudnn7.6.5。

<think>好的,我现在需要解决用户提出的PaddlePaddle-GPU安装失败的问题。根据用户提供的引用资料,我得先整理已有的信息,然后一步步分析可能的原因解决方案。 首先,用户提到了安装CUDA 12.0后出现libstdc++.so.6版本问题,显示缺少GLIBCXX_3.4.30[^1]。这说明系统里的GLIBC++库版本不够新,可能CUDA 12.0需要更高版本的支持。这时候可能需要更新系统的libstdc++6包,或者降低CUDA版本。 然后,引用[2]提到使用Docker镜像可以避免安装依赖的问题,因为所有东西都打包好了。这可能是一个快速解决方案,尤其是对于不想手动处理依赖的用户来说,安装Docker然后使用官方镜像应该能省去很多麻烦。 引用[3]给出的是通过conda安装特定版本paddlepaddle-gpucudatoolkit。这里指定了版本2.6.1CUDA 11.7,并且使用了清华的镜像源。这说明版本兼容性很重要,特别是CUDAPaddlePaddle版本需要匹配。用户可能安装了不兼容的版本组合,导致安装失败。 引用[4]中用户尝试重新执行pip install,但可能没有解决依赖问题。有时候,单纯重新安装可能不够,需要检查requirements.txt中的版本是否正确,或者是否存在其他依赖冲突。 综合这些信息,我需要分步骤给出解决方案。首先检查CUDAcuDNN版本是否匹配PaddlePaddle的要求。然后考虑使用conda安装指定版本,或者使用Docker简化流程。如果遇到GLIBCXX问题,可能需要更新系统库或降低CUDA版本。此外,确保pip或conda的源配置正确,比如使用清华镜像加速下载。 可能还需要用户确认他们的系统环境,比如Ubuntu版本CUDA是否正确安装,是否有多个CUDA版本导致冲突。另外,建议用户参考官方文档的版本匹配表格,这能有效避免兼容性问题。如果用户不想处理依赖,推荐Docker方式,这可能最省事。 最后,生成相关问题的时候,要考虑用户可能遇到的后续问题,比如环境验证、其他依赖安装、Docker的使用方法,以及如何选择CUDA版本等。</think>针对PaddlePaddle-GPU安装失败问题,以下是分步解决方案: ### 一、检查版本兼容性(关键步骤) PaddlePaddle-GPU版本必须CUDAcuDNNPython版本严格匹配。例如: $$ \text{PaddlePaddle 2.6.1} \leftrightarrow \text{CUDA 11.7} \leftrightarrow \text{cuDNN 8.4} $$ 建议通过[PaddlePaddle官网版本对照表](https://www.paddlepaddle.org.cn/)确认兼容组合[^3]。 ### 二、推荐安装方法 #### 方法1:Conda安装(推荐) ```bash conda create -n paddle_env python=3.8 conda activate paddle_env conda install paddlepaddle-gpu==2.6.1 cudatoolkit=11.7 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge ``` 此方法自动解决CUDA依赖问题[^3] #### 方法2:Docker部署(环境隔离) ```bash docker pull paddlepaddle/paddle:latest-gpu-cuda11.7-cudnn8 nvidia-docker run -it --name paddle_demo paddlepaddle/paddle:latest-gpu-cuda11.7-cudnn8 /bin/bash ``` 该方案可跳过本地环境配置[^2] ### 三、常见错误处理 1. **GLIBCXX版本问题**: ```bash sudo apt-get update sudo apt-get install libstdc++6 # 验证版本 strings /usr/lib/x86_64-linux-gnu/libstdc++.so.6 | grep GLIBCXX ``` 若仍无法解决,建议使用CUDA 11.x版本[^1] 2. **依赖冲突**: ```bash python -m pip install paddlepaddle-gpu==2.6.1.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html ``` ### 四、验证安装 ```python import paddle print(paddle.utils.run_check()) # 应输出"PaddlePaddle is installed successfully!"[^1] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值