VS2013环境下Boost库配置

序言

最近了解各大互联网公司的校招要求,发现了解Boost程序库也是不可或缺的一部分~

于是,决定潜心研究下,这个准标准库~

首先,在官网下载boost的最新版本Boost 1.59.0 ,这是当前的最新版本。

下面详细给出,VS2013环境下配置boost的详细步骤!

Boost编译预处理

(1)首先,将下载的压缩包,解压到一个目录下(下面是我的设置): 
1

(2)打开文件夹下有个bootstrap.bat文件: 
2

(3)双击运行boostrap.bat文件,自动执行完自动关闭,此时会发现文件夹下,增加了bjam.exe文件 
3

(4)同理,双击运行该bjam.exe文件,它会自动执行,执行结束自动关闭。

至此,boost库初期安装完成。

VS2013环境配置

(1)打开VS2013 , 创建一个控制台空项目test: 
添加文件main.cpp,写入如下代码:

<code class="hljs cpp has-numbering" style="display: block; padding: 0px; color: inherit; box-sizing: border-box; font-family: "Source Code Pro", monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal; background: transparent;"><span class="hljs-preprocessor" style="color: rgb(68, 68, 68); box-sizing: border-box;">#include <boost/lexical_cast.hpp>     </span>
<span class="hljs-preprocessor" style="color: rgb(68, 68, 68); box-sizing: border-box;">#include <iostream>     </span>
<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">using</span> <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">namespace</span> <span class="hljs-built_in" style="color: rgb(102, 0, 102); box-sizing: border-box;">std</span>;
<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">int</span> main()
{
    <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">using</span> boost::lexical_cast;
    <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">int</span> a = lexical_cast<<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">int</span>>(<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">"123"</span>);
    <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">double</span> b = lexical_cast<<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">double</span>>(<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">"123.0123456789"</span>);
    <span class="hljs-built_in" style="color: rgb(102, 0, 102); box-sizing: border-box;">string</span> s0 = lexical_cast<<span class="hljs-built_in" style="color: rgb(102, 0, 102); box-sizing: border-box;">string</span>>(a);
    <span class="hljs-built_in" style="color: rgb(102, 0, 102); box-sizing: border-box;">string</span> s1 = lexical_cast<<span class="hljs-built_in" style="color: rgb(102, 0, 102); box-sizing: border-box;">string</span>>(b);
    <span class="hljs-built_in" style="color: rgb(102, 0, 102); box-sizing: border-box;">cout</span> << <span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">"number: "</span> << a << <span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">"  "</span> << b << endl;
    <span class="hljs-built_in" style="color: rgb(102, 0, 102); box-sizing: border-box;">cout</span> << <span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">"string: "</span> << s0 << <span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">"  "</span> << s1 << endl;
    <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">int</span> c = <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0</span>;
    <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">try</span>{
        c = lexical_cast<<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">int</span>>(<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">"abcd"</span>);
    }
    <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">catch</span> (boost::bad_lexical_cast& e){
        <span class="hljs-built_in" style="color: rgb(102, 0, 102); box-sizing: border-box;">cout</span> << e.what() << endl;
    }
    system(<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">"pause"</span>);
    <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">return</span> <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0</span>;
}</code><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right: 1px solid rgb(221, 221, 221); list-style: none; text-align: right; background-color: rgb(238, 238, 238);"><li style="box-sizing: border-box; padding: 0px 5px;">1</li><li style="box-sizing: border-box; padding: 0px 5px;">2</li><li style="box-sizing: border-box; padding: 0px 5px;">3</li><li style="box-sizing: border-box; padding: 0px 5px;">4</li><li style="box-sizing: border-box; padding: 0px 5px;">5</li><li style="box-sizing: border-box; padding: 0px 5px;">6</li><li style="box-sizing: border-box; padding: 0px 5px;">7</li><li style="box-sizing: border-box; padding: 0px 5px;">8</li><li style="box-sizing: border-box; padding: 0px 5px;">9</li><li style="box-sizing: border-box; padding: 0px 5px;">10</li><li style="box-sizing: border-box; padding: 0px 5px;">11</li><li style="box-sizing: border-box; padding: 0px 5px;">12</li><li style="box-sizing: border-box; padding: 0px 5px;">13</li><li style="box-sizing: border-box; padding: 0px 5px;">14</li><li style="box-sizing: border-box; padding: 0px 5px;">15</li><li style="box-sizing: border-box; padding: 0px 5px;">16</li><li style="box-sizing: border-box; padding: 0px 5px;">17</li><li style="box-sizing: border-box; padding: 0px 5px;">18</li><li style="box-sizing: border-box; padding: 0px 5px;">19</li><li style="box-sizing: border-box; padding: 0px 5px;">20</li><li style="box-sizing: border-box; padding: 0px 5px;">21</li><li style="box-sizing: border-box; padding: 0px 5px;">22</li></ul><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right: 1px solid rgb(221, 221, 221); list-style: none; text-align: right; background-color: rgb(238, 238, 238);"><li style="box-sizing: border-box; padding: 0px 5px;">1</li><li style="box-sizing: border-box; padding: 0px 5px;">2</li><li style="box-sizing: border-box; padding: 0px 5px;">3</li><li style="box-sizing: border-box; padding: 0px 5px;">4</li><li style="box-sizing: border-box; padding: 0px 5px;">5</li><li style="box-sizing: border-box; padding: 0px 5px;">6</li><li style="box-sizing: border-box; padding: 0px 5px;">7</li><li style="box-sizing: border-box; padding: 0px 5px;">8</li><li style="box-sizing: border-box; padding: 0px 5px;">9</li><li style="box-sizing: border-box; padding: 0px 5px;">10</li><li style="box-sizing: border-box; padding: 0px 5px;">11</li><li style="box-sizing: border-box; padding: 0px 5px;">12</li><li style="box-sizing: border-box; padding: 0px 5px;">13</li><li style="box-sizing: border-box; padding: 0px 5px;">14</li><li style="box-sizing: border-box; padding: 0px 5px;">15</li><li style="box-sizing: border-box; padding: 0px 5px;">16</li><li style="box-sizing: border-box; padding: 0px 5px;">17</li><li style="box-sizing: border-box; padding: 0px 5px;">18</li><li style="box-sizing: border-box; padding: 0px 5px;">19</li><li style="box-sizing: border-box; padding: 0px 5px;">20</li><li style="box-sizing: border-box; padding: 0px 5px;">21</li><li style="box-sizing: border-box; padding: 0px 5px;">22</li></ul>

此时,你会发现: 
4,我们的VS还不识别boost库。

(2)在菜你的项目test右键 选择 ->属性页(VS2013在这才能找到相关的属性配置栏)->C/C++,在 附加包含目录添加或编辑Boost的文件路径,如下图所示: 
5

添加完毕,确定即可;

(3)在 链接器 选项卡中,找到附加库目录,添加Boost的libs的目录: 
6

添加完毕,确定即可。

此时你会发现,在代码编辑器中红色波浪线的error提示已经消失不见了。

F5运行程序,正确执行: 
7

总结

到此为止,VS环境中的Boost配置就完成了,接下来好好学习boost吧~~~

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值