Partial correlation coefficient

在统计学中,部分相关系数用于在控制第三个变量的情况下衡量两个变量的关系。本文介绍了如何利用Python的pingouin库计算偏相关,以分析学生学习小时数与期末考试成绩之间的关系,同时控制当前班级成绩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用PYTHON计算偏相关系数(Partial correlation coefficient)

在统计学中,我们经常使用皮尔逊相关系数来衡量两个变量之间的线性关系。然而,有时我们感兴趣的是理解两个变量之间的关系,同时控制第三个变量。
例如,假设我们想要测量学生学习的小时数和他们获得的期末考试成绩之间的关联,同时控制学生在班级中的当前成绩。在这种情况下,我们可以使用部分相关来衡量学习时间和期末考试成绩之间的关系。

例如:Partial Correlation in Python

假设我们有如下的DataFrame,它显示了10名学生的当前年级、学习总小时数和期末考试成绩:
在这里插入图片描述
为了在控制currentGrade的同时计算hours和examScore之间的部分相关性,我们可以使用pingouin包中的partial_corr()函数,它使用以下语法:

partial_corr(data, x, y, covar)

where:
data: name of the dataframe
x, y: names of columns in the dataframe
covar: the name of the covariate column in the dataframe (e.g. the variable you’re controlling for)


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

a useful man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值