PSM倾向匹配详细步骤和程序

本文详细介绍了在Stata中使用psmatch2包进行倾向匹配的步骤,包括安装包、数据准备、分析命令解读及结果解读。通过1:1匹配方法,结合logit模型,对匹配后的均衡性进行了检验,并探讨了PSM方法的优缺点及其可能的局限性。
摘要由CSDN通过智能技术生成


试验设计中,匹配的目的在于确保干预效应估计是建立在可比个体之间的不同结果的基础上。最简单的匹配方式是将干预组和对照组中协变量值相同的两个个体进行配对分析。但是,如果协变量并不是某一个变量,而是一组变量时,这种简单的匹配方式也就不再适用,而是采用倾向得分匹配方式进行匹配。倾向性匹配得分(PSM)分析,主流统计学软件SAS、Stata、SPSS(22.0以上版本)、R语言均可实现。但SAS难度较高,不推荐;SPSS虽然操作简便,但是仅能实现1:1匹配,如无特殊需求可以尝试。笔者重点推荐使用Stata或者R语言完成PSM分析。下面笔者将以实例演示的形式讲解Stata软件在倾向性匹配得分中的应用。

1.安装psmatch2统计包。

命令如下:

.ssc install psmatch2

需要在联网状态下键入上述命令,然后软件自动搜索对应的程序包进行安装,成功安装后会有以下提示:

checking psmatch2 consistency and verifying not already installed…
installing into .\ado\plus… installation complete.(出现此提示表示安装完成)

为了验证是否成功安装以及查看psmatch2命令的帮助菜单,可在命令窗口键入

.help psmatch2

如果能顺利弹出帮助文件,表示安装成功,可正常使用。

2.数据准备

数据如下图所示,共有10个变量,614个观测,试验组185例,对照组429例。treat变量即为分组变量,“1”=试验组,“0”=对照组。age, educ, black, hispan, married, nodegree, re74, re75为协变量, re78为结局变量。事实上,倾向性匹配得分分析是要建立一个以分组变量(treat)为因变量,各个协变量(age, educ, black, hispan, married, nodegree, re74, re75)为自变量的回归方程。而结局变量(re78)在PSM过程中几乎不参与建模。
在这里插入图片描述

图1. 数据整理

3.数据分析及命令解读

命令窗口键入如下命令:

.gen tm
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

a useful man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值