SVM原理

参考:
http://eric-gcm.iteye.com/blog/1981771
https://blog.csdn.net/wsj998689aa/article/details/47027365
(1)SVM的引入,线性可分(通常,先是看二维)——后在一并假设在高维空间中也能找到一条线性可分的直线;由于直线可旋转,因此满足条件的有很多条,怎么选择最好的那一条,需要引入刻画该线性可分模型的分割,注意(此处两点定义:(1)一组数据(一组样本)到该线性可分直线的间隔的定义:取得是所有点中到这条直线间隔中最小的那条间隔;(2)模型好坏的定义:使正负样本距离这条线性直线间隔最大的那条直线;在此基础上,理论推导,首先引入线性可分表达式,定义距离,将前面两个定义转化为约束和目标函数,通过进一步转化,(考虑到参数和截距成倍增长,会导致间隔翻4倍,但其实平分直线并没有改变,因此,进行归一化),将最大化目标函数转化成最小化(是二次方的),由于条件约束是线性的,因此问题为二次优化,可用现成的包,也可用拉格朗日对偶极值法求;

上述思路只能处理线性情况,要处理非线性情况,需要考虑到核函数;
核函数解决了:原本高维空间需要用自变量多次组合表达的困难情形,比如2个变量,可以表达高维空间中5个基向量(包含常数项);3个变量对应19个基向量,诸如此类…………..;数量随着自变量维度增加,高维空间表达越来越复杂;因此,通过一种技术,类似于PCA里面的一种推导,高维空间表示:可以通过低维空间的自变量作为基向量,将低维空间自变量进行构造模型,再通过一个高维映射得到;;这个与先将低维向量映射到高维向量,然后在高维向量中建模,其可以达到的结果一样,这就是核函数的功效;一个是F(x),F(y)——先映射到高维建模;一个是F(x,y)——直接基于原来空间建模,一样!!!

总结,核心理论点:
(1)样本点(正样本点)到平分线的间隔;——最初始的表示,进一步转乘约束
(2)正样本、负样本点到平分线的间隔——目标函数
(3)将约束及目标函数组合,构成最终模型;
(4)通过拉格朗日对偶方法求取模型

上述是针对线性可分,针对非线性可分,引入核函数;

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值