国内心理健康大模型速记

主要快速记录一下目前公开的心理大模型的信息

1 EmoLLM-心理健康大模型

地址:https://github.com/SmartFlowAI/EmoLLM
知乎教程:https://zhuanlan.zhihu.com/p/685269189
交互文档:https://xiaohu.ai/p/11244
在这里插入图片描述

这个模型通常包含以下几个关键组成部分:

  • 认知因素:涉及个体的思维模式、信念系统、认知偏差以及解决问题的能力。认知因素对心理健康有重要影响,因为它们影响个体如何解释和应对生活中的事件。
  • 情感因素:包括情绪调节、情感表达和情感体验。情感健康是心理健康的重要组成部分,涉及个体如何管理和表达自己的情感,以及如何从负面情绪中恢复。
  • 行为因素:涉及个体的行为模式、习惯和应对策略。这包括应对压力的技巧、社交技能以及自我效能感,即个体对自己能力的信心。
  • 社会环境:包括家庭、工作、社区和文化背景等外部因素,这些因素对个体的心理健康有着直接和间接的影响。
  • 生理健康:身体健康与心理健康紧密相关。良好的身体健康可以促进心理健康,反之亦然。
  • 心理韧性:指个体在面对逆境时的恢复力和适应能力。心理韧性强的人更能够从挑战中恢复,并从中学习和成长。
  • 预防和干预措施:心理健康大模型还包括预防心理问题和促进心理健康的策略,如心理教育、心理咨询、心理治疗和社会支持系统。
  • 评估和诊断工具:为了有效促进心理健康,需要有科学的工具来评估个体的心理状态,以及诊断可能存在的心理问题。

2 HeartLink - 心理共情大模型

https://github.com/Nobody-ML/HeartLink

在这里插入图片描述

本项目的训练数据来源于真实心理咨询场景,第一版使用约 180k 轮问答对数据,数据持续 scale 中~

数据涵盖场景丰富,包括了“爱情、婚恋、职场、生活、社会、学习、性、过往、情绪、教育、咨询、危机”等众多丰富的场景。大致划分为:情感、生活、社交、疾病、学习、职场、过往、性。
在这里插入图片描述

3 SoulStar - 知心心理咨询大模型

https://github.com/Nobody-ML/SoulStar
https://huggingface.co/X-D-Lab/MindChat-7B

SoulStar 是一个心理咨询大模型,通过 Large Language Model 指令微调而来,内核为温柔、知心的大姐姐,她能分析用户的咨询内容和需求,给予详实的且具有人文关怀的长回复或详细建议,并且回复中附有 emoji 表情和颜文字(~(╹▽╹)、✿✿ヽ(゚▽゚)ノ✿ 、(_))以拉近与用户的距离,让用户在咨询中得到心理上的支持和帮助。


4 MindChat(漫谈): 心理大模型

https://github.com/X-D-Lab/MindChat

漫谈(MindChat)期望从心理咨询、心理评估、心理诊断、心理治疗四个维度帮助人们纾解心理压力与解决心理困惑, 提高心理健康水平. 作为一个心理大模型, MindChat通过营造轻松、开放的交谈环境, 以放松身心、交流感受或分享经验的方式, 与用户建立信任和理解的关系. MindChat希望为用户提供隐私、温暖、安全、及时、方便的对话环境, 从而帮助用户克服各种困难和挑战, 实现自我成长和发展.

在这里插入图片描述
目前MindChat的开源模型采用了基于如下自动化流程构造的约100万条的高质量多轮心理对话数据进行训练, 涵盖工作、家庭、学习、生活、社交、安全等多个方面, 由于特殊的数据构造规则,MindChat能以更加共情、引导的方式与用户沟通,区别于各自竞品所表现出的“问答”方式。
在这里插入图片描述


5 心大陆AI大模型

https://www.xdlpsy.com/
产品化大模型

在这里插入图片描述
在这里插入图片描述

一个人心理健康的个性化成长路径:
在这里插入图片描述

6 eChat:心理健康支持对话陪伴大模型

MeChat (Mental Health Support Chatbot),由西湖大学深度学习实验室开发的心理健康支持对话陪伴机器人,由 ChatGLM-6B LoRA16-bit 指令微调得到,提供情感支持和心理疏导,关于心理健康健康支持外的属于基础模型已有的知识。

地址:https://github.com/qiuhuachuan/smile

模型地址:https://huggingface.co/qiuhuachuan/MeChat

论文地址:https://arxiv.org/pdf/2305.00450.pdf

SMILE (Single-turn to Multi-turn Inclusive Language Expansion),一种单轮对话到多轮对话的包容性语言扩展技术。具体来说,利用 ChatGPT 将单轮长对话转换为多轮对话,更好地模拟了真实世界中求助者与支持者之间的多轮对话交流。

以下是一个交互示例:

来访者:你好
咨询师:你好,很高兴能够帮助到你。你可以告诉我更多关于你的情况吗?
来访者:我最近睡眠很差怎么办?
咨询师:最近睡眠质量不好,你有没有尝试过一些方法来改善睡眠呢?
来访者:我可能最近晚上睡觉前总喜欢玩手机,越玩人就越兴奋
咨询师:晚上玩手机确实会刺激大脑,导致入睡困难。你可以尝试在睡觉前设定一个手机使用时间,逐渐减少玩手机的时间,以帮助放松入睡。
来访者:我应该设置一个晚上9点的闹钟,强制我不玩手机,让我的大脑开始放松。
咨询师:是的,设置一个晚上的闹钟是一个很好的方法。你可以尝试在9点之前放下手机,让自己进入放松的状态,然后逐渐入睡。
来访者:我 尝 试了一下,看看能否改善?
咨询师:很好,试试看吧。另外,你还可以尝试一些放松的技巧,比如深呼吸、冥想或者听一些轻柔的音乐来帮助你放松身心,帮助入睡。
来访者:非常感谢你的建议,我会去试试的
咨询师:不客气,希望这些方法能对你有所帮助。如果还有其他问题,随时都可以来找我倾诉。

7 QiaoBan:中文儿童情感陪伴大模型“巧板”

在训练数据上,从真实场景的儿童对话话题列表中进行采样,选定当前对话话题,在儿童情绪辅导理论的指导下,构建了 1k 余段高质量中文儿童情感陪伴对话数据。数据构建过程由经过儿童情绪辅导理论培训的志愿者完成,同时邀请了儿童心理学领域的专家学者对数据的收集过程提出建议与指导,以确保数据的准确性和可信度。

地址:https://github.com/HIT-SCIR-SC/QiaoBan

从项目中的话题列表共 538 个(文件:https://github.com/HIT-SCIR-SC/QiaoBan/blob/main/topic.txt)部分如下:

班会游戏、新年班会、评奖班会、班级聚餐、班级聚会
元旦晚会、才艺晚会、儿童节文艺表演、“快乐童年”才艺小舞台、儿童节游园、春节联欢晚会、运动会、歌唱比赛、诗朗诵比赛、年级篮球赛
动物园、博物馆、风景区、春秋游
篮球、足球、跑步、羽毛球、乒乓球、台球、游泳
拾金不昧、热爱劳动、诚实、乐于助人、自主为班级搬东西

在这里插入图片描述

8 灵心(SoulChat):心理健康大模型

模型地址:https://huggingface.co/scutcyr/SoulChat
github: https://github.com/scutcyr/SoulChat
在这里插入图片描述

构建了超过15万规模的单轮长文本心理咨询指令与答案(SoulChatCorpus-single_turn),回答数量超过50万(指令数是当前的常见的心理咨询数据集PsyQA的6.7倍),并利用ChatGPT与GPT4,生成总共约100万轮次的多轮回答数据(SoulChatCorpus-multi_turn)。

此外,由于在预实验中发现,纯单轮长本文驱动的心理咨询模型会产生让用户感到厌烦的文本长度,而且不具备引导用户倾诉的能力,纯多轮心理咨询对话数据驱动的心理咨询模型则弱化了模型的建议能力,因此,混合SoulChatCorpus-single_turn和SoulChatCorpus-multi_turn构造成超过120万个样本的单轮与多轮混合的共情对话数据集SoulChatCorpus。

### 大型语言模型在心理咨询服务中的应用 目前,通用领域的大型语言模型(LLM),例如 ChatGPT,在遵循指令和产生类似人类的响应方面取得了显著成功[^1]。然而,这些模型并未针对特定领域如心理学进行优化,这可能导致其在处理复杂心理健康问题时存在不足。 为了提高心理咨询服务质量并确保准确性,一些研究者已经开始探索专门训练的心理咨询专用大语言模型。这类模型通常会基于现有的高质量预训练基础之上进一步微调,以更好地理解和回应来访者的具体需求。例如,对于大学生群体而言,有研究表明心理资本与就业能力之间存在着密切关系,虽然这不是直接关于LMM的应用案例,但它强调了个性化服务的重要性[^2]。 值得注意的是,在医疗健康领域已经出现了成功的尝试——比如ChatDoctor项目就是通过对原始LLaMA架构实施针对性调整来提升其在医疗服务场景下的表现[^3]。尽管这是面向更广泛的医疗行业而非仅限于心理咨询,但这种方法论同样适用于创建更加专业的心理辅导工具。 当考虑开发或部署一个用于心理咨询的大规模语言模型时,除了要关注技术实现细节外,还应重视伦理考量以及如何保护用户隐私等问题。此外,可以借鉴其他行业的经验教训,如通过API接口集成外部资源和服务,从而增强系统的实用性和用户体验感[^4]。 ```python import unirest # 假设使用Python环境作为示例编程语言 def get_nearby_hospitals(location): response = unirest.post("https://api.amap.com/v3/place/text", headers={"Content-Type": "application/json"}, params={ 'key': 'your_api_key', 'keywords': 'hospital', 'city': location, 'output': 'json' }) hospitals_info = [] data = response.body.get('pois', []) for item in data: name = item.get('name') address = item.get('address') hospitals_info.append({'Name': name, 'Address': address}) return hospitals_info ``` 此代码片段展示了如何利用第三方API查询附近医疗机构的信息,这对于构建综合性的心理健康服务平台来说是一个有用的补充功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值