承接练习题 - 基于快速文本标题匹配的知识问答实现(一,基础篇),前篇主要把qdr这个项目解剖了一下,现在开始应用做一下问答。
可以看到qdr这个项目的特点是:可以快速比对两个文本之间的相似性,而且计算tfidf、bm25、lm三款模型的速度很快。
那么本轮知识问答的设计源于此:
- 先储备一批问答语料,一问一答比较合适;
- 把问题进行分词,变为文本序列;
- 载入qdr模型之中,进行训练;
- 先trainer,统计词条频次 / 单词存在的文档数量两个数据;
- Scoring,把trainer的统计数据
QueryDocumentRelevance
载入,变为文本集合;
- 新查询句,分词;
- 分词之后的查询句在model中比对,得到最大相似的query对,
- 从query找到对应的answer
接下来会演示:一个极其简单的demo + 一部分百度问答语料的demo.
相关code + 数据集,可见笔者github:mattzheng/qdrQA
其中,baidu_demo.py
是基于一部分百度问答语料;demo1.py
是简单示范案例
目录
1 知识问答简单demo
import os
import unittest
import numpy as np
from qdr import ranker,trainer
from tempfile import mkstemp
from qdr import QueryDocumentRelevance
class qdrQA(object):
def __init__(self, query, document):
self.query = query
self.document = document
assert len(self.query)==len(self.document), "Inconsistent length on both query and document."
self.qd = self.TrainModel()
self.scorer = QueryDocumentRelevance(self.qd._counts,self.qd._total_docs)
def TrainModel(self):
# 模型统计词条频次 / 单词存在的文档数量两个数据
qd = trainer.Trainer()
qd.train(self.query)
return qd
def update(self,query_update,document_update):
# 模型update
qd2 = trainer.Trainer()
qd2.train(query_update)
self.qd.update_counts_from_trained(qd2) # 合并两个容器的训练集
self.query = self.query + query_update
self.document = self.document + document_update
def QueryAnswer(self,input_sentence,select_model = 'tfidf',limit = 0):
# 查询语句
#query_scores = np.array([self.scorer.score(input_sentence,qu)[select_model] for qu in self.query])
query_scores = np.array([qu[select_model] for qu in self.scorer.score_batch(input_sentence,self.query)])
if query_scores.max() > limit:
answer = self.document[query_scores.argmax()]
else:
answer = 'sorry,no match sentence.'
return answer
以上就是基于qdr进行简单的封装,其中
TrainModel()
是训练模块;update()
是如果有新的语料可以随机更新(非常方便!);QueryAnswer()
,问答匹对。
进行简单测试:
# 数据集
query = [['信用积分','在','哪里','查询'],['蚂蚁积分','可以','兑换','什么','东西'],['信用积分','兑换','什么','性价比','比较','高']]
document = ['可以在首页查询','蚂蚁积分可以兑换商城中很多东西','信用积分性价比最高兑换物品是苹果手机']
# 建模
qdr = qdrQA(query,document)
# 问答
select_model = 'tfidf'
input_sentence = ['信用积分','查询']
limit = 0
print qdr.QueryAnswer(input_sentence,limit = 0)
>>> 可以在首页查询
以上是输入文字序列,其中query对需要分词,因为这样可以增加匹配概率。
那么如果新加语料,如何训练:
# 模型更新
query_update = [['信用积分','与','蚂蚁积分','的','区别']]
document_update = ['区别主要集中在商城兑换品']
qdr.update(query_update,document_update)
# 问答
select_model = 'tfidf'
input_sentence = ['信用积分','与','蚂蚁积分','区别']
print(qdr.QueryAnswer(input_sentence))
>>> 区别主要集中在商城兑换品
很方便的直接更新,只要与训练语料格式保持一致。
2 部分百度问答语料的问答
该百度问答语料截取自:【语料】百度的中文问答数据集WebQA
import json
import jieba
# 问答
def qaPrint(input_sentence,select_model = 'tfidf',limit = 0):
query_scores = np.array([qu[select_model] for qu in qdr.scorer.score_batch(input_sentence,qdr.query)])
similar_answer = ''.join(qdr.query[query_scores.argmax()])
print 'query is : ', ''.join(input_sentence)
print 'most similar query is : ', similar_answer
print 'answer is :',qdr.QueryAnswer(input_sentence,limit = 0)
def QueryJieba(input_sen):
return [i.encode('utf-8') for i in list(jieba.cut(input_sen))]
# 数据准备
qa = open("/mnt/qdr/me_test.ann.json", "r").read()
qa = eval(qa)
query_bd = []
answer_bd = []
for qa_ in qa.values():
if (qa_['question']!='') and (qa_['evidences'].values()[0]['evidence']!=''):
query_bd.append(qa_['question'])
answer_bd.append(qa_['evidences'].values()[0]['evidence'])
# jieba
query_bd_jieba = [list(jieba.cut(wo.decode('unicode-escape'))) for wo in query_bd]
# format processing
query_bd_jieba = [[i.encode('utf-8') for i in q] for q in query_bd_jieba]
answer_bd = [q.encode('utf-8') for q in answer_bd]
# 模型训练
qdr = qdrQA(query_bd_jieba,answer_bd)
# 提问
input_sen = '沙漠最大的叫什么?'
qaPrint(QueryJieba(input_sen))
>>> query is : 沙漠最大的叫什么?
>>> most similar query is : 世界上最大的沙漠叫什么名字?
>>> answer is : 撒哈拉沙漠撒哈拉沙漠面积为860万平方公里,是世界上最大的沙漠,占据了北非大部分地区。
# 提问2
input_sen = '最浅的海是哪里'
qaPrint(QueryJieba(input_sen))
>>> query is : 最浅的海是哪里
>>> most similar query is : 世界上最浅的海叫什么?
>>> answer is : 亚速海平均深度8米,最深处也只有14米,是世界上最浅的海记得采纳啊
加载数据,把问题数据进行jieba分词,其中,qdr模型接受utf-8格式,需要转化一下格式。
这边简单写了一下,提问之后,返回给你最相似的问题以及对应的答案。
延伸:单独来看,一些小模块的应用:
1、 获得该批语料单词的idf值
qdr.scorer.get_idf('沙漠')
>>> 7.321188556739478
2、单独的文本匹配模块
qdr.scorer.score_batch(QueryJieba('沙漠最大的叫什么?'),[QueryJieba('最浅的海是哪里')])
>>> [{'bm25': 0.43801802356073943,
'lm_ad': -28.28692876400435,
'lm_dirichlet': -27.58677603082954,
'lm_jm': -33.64719347947683,
'tfidf': 0.014088049093832688}]