写神经网络模型的准备代码

本文档展示了如何在Python中设置CUDA设备,使用`torch`库指定GPU索引。通过`torch.cuda.is_available()`检查GPU可用性,并确保随机数种子的一致性以复现实验结果。此外,还引入了`IncrementalBar`进行命令行进度显示,适用于数据处理或训练过程的可视化跟踪。
摘要由CSDN通过智能技术生成
parser.add_argument('--gpu-index', type=int, default=0, metavar='N')
args = parser.parse_args()
device = torch.device('cuda', index=args.gpu_index) if torch.cuda.is_available() else torch.device('cpu')

if torch.cuda.is_available():
    torch.cuda.set_device(args.gpu_index)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
env.seed(args.seed)
# 命令行运行,进度提示
from progress.bar import IncrementalBar
mylist = [1, 2, 3, 4, 5, 6, 7, 8]
bar = IncrementalBar('Countdown', max=len(mylist))
for item in mylist:
    bar.next()
    time.sleep(1)
bar.finish()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值