数据挖掘概论

复习笔记

  • 数据挖掘定义
    • 从大量的数据中挖掘那些令人感兴趣的、有用的、隐含的、先前未知的和可能有用的模式或知识
    • Data mining consists of applying data analysis and discovery algorithms that, under acceptable computational efficiency limitations, produce a particular enumeration of patterns over the data [Fayyad et al.,1996].
  • 知识发现过程(KDD:Knowledge Discovery in Database)
    • 数据清理:消除噪声和删除不一致数据
    • 数据集成:多种数据源可以组合在一起
    • 数据选择:从数据库中提取与分析任务相关的数据
    • 数据变换:把数据变换和统一成适合挖掘的形式
    • 数据挖掘:核心步骤,使用智能方法提取数据模式
    • 模式评估:根据兴趣度度量,识别代表知识的真正有趣的模式
    • 知识表示:使用可视化和知识表示技术,向用户提供挖掘的知识
  • 数据挖掘主要任务
    • 关联规则挖掘(关联分析)
    • 聚类分析
      • 将类似的数据归类到一起,形成一个新的类别进行分析
      • 最大化类内的相似性和最小化类间的相似性
    • 分类/预测
      • 找出描述和区分数据类/概念的模型,用以预测未知的对象类标签
      • 决策树、人工神经网络等
    • 孤立点(离群点)分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值