pycaffe预测非图片数据分类

本文介绍了如何将Caffe模型从训练转移到部署阶段,并详细解释了deploy.prototxt文件的配置调整方法。此外,还提供了如何利用pycaffe进行预测的具体步骤,以及如何通过设置GLOG_minloglevel来控制日志输出等级,最后对比了GPU和CPU环境下模型预测的时间差异。
摘要由CSDN通过智能技术生成

1、 准备工作

一. deploy.prototxt文件

修改于train.prototxt,主要为3部分:

(1) data层 修改为input层
layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 1 dim: 7 dim: 1 dim: 1 } }
(2)删掉layer 中关于weight和bias设置部分,因为caffemodel会提供value
(3)将最后的输出层softmax改成prob
layer {
  name: "prob"
  type: "Softmax"
  bottom: "fc3"
  top: "prob"
}

二、 caffemodel 训练保存模型

三 、保存在numpy数组中的数据,npy

2、模型

caffe/python/classify.py中caffe.Classifier与classifier.predict主要用于图像识别,通过阅读python/caffe/classifier.py可知其中有一系列对图片的crop,centor等处理,不适宜直接使用处理非图片数据。
故直接使用caffe.Net 与net.foward_all 直接预测数据的标签

model_weights = 'model_iter_1000000.caffemodel'
model_file = 'deploy.prototxt'
net = caffe.Net(model_file, model_weights, caffe.TEST)
test_data = np.load('mean_data.npy')
out = net.forward_all(data=test_data)
print out[net.outputs[0]]

3、关闭caffe log输出

GLOG_minloglevel = 2 ,非永久关闭glog输出,int,默认为0(INFO), 小于这个日志级别的将不会打印

GLOG_minloglevel=2 python cc_predict/t.py

4、运行时间

pycaffe 编译时包含gpu时运行时间为3s
如果去掉gpu,即makefile中cpu only 运行时间0.01s
减少的时间应该是数据用于同步的时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值