pytorch 中detach() 和 with torch.no_grad()和eval()

本文对比了PyTorch中的detach()和torch.no_grad()方法,解释了它们在梯度跟踪和训练/推断模式中的作用,同时提到了model.eval()的区别。理解这两种技巧对于高效编程和防止梯度错误至关重要。
摘要由CSDN通过智能技术生成

detach() 和 torch.no_grad() 都可以实现相同的效果,只是前者会麻烦一点,对每一个变量都要加上,而后者就不用管了:

- detach() 会返回一个新的Tensor对象,不会在反向传播中出现,是相当于复制了一个变量,将它原本requires_grad=True变为了requires_grad=False

- torch.no_grad() 通常是在推断(inference)的时候,用来禁止梯度计算,仅进行前向传播。在训练过程中,就像画了个圈,来,在我这个圈里面跑一下,都不需要计算梯度,就正向传播一下。
 

而model.eval()和torch.no_grad()两者都用,因为两者有着不同的作用:

- torch.no_grad():在autograd中禁用梯度跟踪

- model.eval():更改所调用模块的forward()行为。例如,它禁用dropout,并使用测试时bn norm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值