ModuleNotFoundError: No module named ‘tensorrt‘ ——Python 运行 import tensorrt ——报错处理

在尝试导入TensorRT模块时遇到'No module named 'tensorrt''的错误。解决方法是使用pip安装nvidia-tensorrt,如果需要,再安装pycuda。可以参考相关博文获取更多关于TensorRT安装和错误排查的信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 解决 TensorRT 模块未找到错误 遇到 `ModuleNotFoundError: No module named 'tensorrt'` 的原因通常是由于环境配置不当或平台不兼容所致。具体分析如下: #### 平台兼容性问题 并非所有平台均支持 TensorRT Python 库的安装和使用。目前,所有版本的 TensorRT (截至最新版 8.0.2) 均不提供 Windows 下的官方 Python API 支持[^4]。 对于 Linux 用户而言,可以通过 NVIDIA 官方渠道获取适用于特定操作系统的预编译二进制文件来完成安装。然而,在非受支持的操作系统上尝试通过 pip 或其他方式直接安装 tensorrt 包将会失败并抛出上述异常[^2]。 #### 正确安装方法 针对已知支持的操作系统(主要为某些 Linux 发行版),应遵循以下建议进行 TensorRT 及其依赖项 pycuda 的正确安装: 1. **确认操作系统与硬件架构** 需要确保所使用的计算机满足 TensorRT 所需最低要求,并且操作系统属于官方文档中列出的支持列表之一。 2. **设置 CUDA 和 cuDNN 环境** 在安装 TensorRT 之前,先按照官方指南准备好合适的 CUDA Toolkit 版本以及对应的 cuDNN SDK。这些工具包是构建深度学习模型的基础组件。 3. **下载并解压 TensorRT 软件包** 访问[NVIDIA 开发者网站](https://developer.nvidia.com/tensorrt),注册账号后可以免费获得 TensorRT 社区版软件包链接。根据目标机器的具体情况选择正确的 tar.gz 文件下载下来并解压缩到本地磁盘指定位置。 4. **配置环境变量** 将 TensorRT 安装路径添加至 LD_LIBRARY_PATH 中以便加载共享库;如果打算开发基于 Python 的应用程序,则还需将 python 目录加入 PYTHONPATH。 5. **验证安装成功与否** 使用简单的测试脚本来检验是否能够正常导入 tensorrt 模块而不会触发任何 ImportError 类型的异常。 ```python import tensorrt as trt print(f'TensorRT version {trt.__version__}') ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨理学AI

不必打赏,关注博主公众号即可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值