jetson 系列 安装完jetpack/已安装 tensorrt 在虚拟环境中仍然报 no module named tensorrt >> 在虚拟环境建立软连接

当使用虚拟环境时,需要考虑

cv2 和 tensorrt 是一样的

更新:cv2 应该是对的。
tensorrt的处理是错的,在 使用 trt时很多方法都找不到。正确的加入虚拟环境的方法:
https://www.bojankomazec.com/2019/12/how-to-install-tensorrt-python-package.html

cv2安装 – 与虚拟环境链接

为了使用TensorRT完成之后的识别功能,也为了推理的更快,我们当然必须要安装opencv

NVIDIA Jetson AGX Xavier学习笔记3——环境配置(pytorch、torchvision、cv2)

进行NVIDIA Jetson AGX Xavier开发组件刷机时已经自动安装了OpenCV,只需要将python虚拟环境链接到OpenCV库即可。

安装完成后,在虚拟环境中执行下列指令以确保python能正确调用cv2

python               //进入python
import cv2
cv2.__version__    //若安装成功且能正常调用,此处能输出安装的从v版本
quit()        

实测在当前环境中 找不到 cv2 虚拟环境可以运行。使用base下的 python2 可以运行找到。

首先在终端执行以下指令查找编译好的cv2库文件的路径。

sudo find / -iname "*cv2*"
// 得到路径 /usr/lib/python3.6/dist-packages/cv2/python-3.6/cv2.cython-36m-aarch64-linux-gnu.so

之后进入<虚拟环境> 的 site-packages文件夹下,并链接到查找到的cv2库文件路径即可。

cd /home/miniforge3/envs/<virtual>/lib/python3.6/site-packages  # 其中virtual是我建立的虚拟环境名
ln -s /usr/lib/python3.6/dist-packages/cv2/python-3.6/cv2.cython-36m-aarch64-linux-gnu.so cv2.so

之后在这个环境中就可以正常验证了:

python               //进入python
import cv2
cv2.__version__    //若安装成功且能正常调用,此处能输出安装的从v版本
quit()               //退出python

对于 tensorrt 也是

(base) agxxavier@agxxavier-desktop:~$ sudo find / -iname "*tensorrt*"
/usr/lib/python3.6/dist-packages/tensorrt
/usr/lib/python3.6/dist-packages/tensorrt/tensorrt.so   // 这个路径
/usr/lib/python3.6/dist-packages/tensorrt-8.0.1.6.dist-info

注:从文件夹进去竟然看不到,,从终端进去ls可以看到…为什么

系统bug 关闭文件管理器重进能看到

之后进入<虚拟环境> 的 site-packages文件夹下,并链接到查找到的tensorrt库文件路径即可。

(deepNN) agxxavier@agxxavier-desktop:~/miniforge3/envs/deepNN/lib/python3.6/site-packages$ ln -s /usr/lib/python3.6/dist-packages/tensorrt/tensorrt.so tensorrt.so
### JETSON 设备上安装 PyTorch 后 `ModuleNotFoundError` 错误解决方案 当遇到 `ModuleNotFoundError: No module named 'torch'` 的错误时,这通常意味着 Python 解释器无法找到已安装的 PyTorch 库。对于 JETSON 设备而言,有几个常见原因可能导致此问题。 #### 虚拟环境管理不当 如果使用的是虚拟环境,则需确认是否激活了正确的环境[^2]。未激活或激活了不包含所需包的其他环境都会引发此类错误。可以尝试通过命令行来验证当前所处的环境: ```bash which python pip list | grep torch ``` 上述命令有助于判断解释器路径及其可用件包列表中是否存在 PyTorch。 #### 版本兼容性问题 不同硬件平台对特定版本的 PyTorch 支持程度有所差异[JETSON 官方文档建议](https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/index.html),应遵循官方推荐版本进行安装以确保最佳性能与稳定性。可通过如下方式获取适合 Jetson 平台预编译二进制文件并安装: ```bash sudo apt-get update && sudo apt-get upgrade -y wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/libnvinfer7_7.2.3-1+cuda11.0_amd64.deb sudo dpkg -i libnvinfer7_7.2.3-1+cuda11.0_amd64.deb # 更多依赖项... pip install --extra-index-url https://pypi.ngc.nvidia.com nvidia-pyindex pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/lts/1.9/cu111/ ``` 注意替换 URL 和版本号至最新发布版。 #### CUDA 配置缺失 即使成功安装了 PyTorch,若未能正确设置 CUDA 环境变量也可能导致加载失败。可以通过以下方法检查 CUDA 是否正常工作以及其可见性给 PyTorch 使用: ```python import torch print(torch.cuda.is_available()) print(torch.version.cuda) ``` 以上代码片段用于检测 GPU 加速功能是否开启及使用的 CUDA 编译版本。理想情况下两者均返回 True 或有效字符串表示形式而非 False 或 None。 #### PATH 设置异常 有时由于系统 PATH 变量配置失误造成动态链接库找不到的情况也会间接影响到 PyTorch 的正常使用。此时可考虑调整 .bashrc 文件中的 LD_LIBRARY_PATH 参数指向正确的 NVIDIA 工具链位置。 最后提醒一点,在执行任何更改前最好先备份现有配置;另外考虑到 Jetson Nano/TX/Xavier NX 等系列间存在架构区别,请务必参照具体型号对应的开发指南操作以免引起不必要的麻烦。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值