《Hierarchical Graph Representation Learning with Differentiable Pooling》论文解析

本文详细解析了斯坦福大学研究团队的论文《Hierarchical graph representation learning with differentiable pooling》,介绍了DIFFPOOL算法如何解决GNN的扁平化结构问题,通过分层pooling实现图的层次表示。实验表明,DIFFPOOL在图分类任务上展现出优越性能,尤其在与GRAPHSAGE结合时效果显著。
摘要由CSDN通过智能技术生成

    最近阅读了由斯坦福大学研究团队发表的这篇名为“Hierarchical graph representation learning with differentiable pooling”论文,对于论文中提出的问题觉得十分新颖,同时论文的写作也很流畅,因此将个人对该论文的理解进行整理,如有不当之处还请指教。

    算法框架

    GNN的相关研究被广泛的应用于图表示学习中,并且在节点分类和链路预测等任务中取得了SOTA的结果。但是GNN框架设计之初是基于CNN实现的,其固有的扁平化结构并不能完全适应于图的表示,因为大多数的图(网络)是具有层次结构的。所以,本文的motivation也是源于图的这种分层结构,提出了一种名为DIFFPOOL的算法。算法的总体框架如图1所示。

    从图1可以看出,DIFFPOOL算法是一种分层pooling的GNN算法。在每一层内部使用的是一种图分类表示算法(本文使用GRAPHSAGE模型【“Inductive representation learning on large graphs”】)来得到当前图中节点的向量表示;在层与层之间则使用局部pooling的操作得到当前图的粗化图(coarsened graph)。在每一层内,算法都会根据GNN得到的节点向量对该层中的图进行聚类操作,将节点映射到一系列类别(cluster)中,从而得到新的分层图。直到最后一层,DIFFPOOL算法会得到整个图的一个统一的向量表示,用于图分类任务。DIFFPOOL算法的核心思想是通过提供一个能够区分图中分层节点的pooling操作来得到一个更深、更多层结构的GNN模型。同时DIFFPOOL算法能够和多种GNN模型进行融合,也说明该算法具有一定的泛化性。

    算法介绍

预备知识

1、图分类任务。将一个图G表示成(A,F),其中A为图的邻接矩阵 A\epsilon \left \{ 0,1 \right \}^{n\times n},F表示图的节点特征矩阵 F\epsilon \mathbb{R}^{n\times d},n 为图中节点的个数,d为节点的特征数(当然,对于一个图的表示可以根据模型需要自行定义,本文使用的是邻接矩阵和特征矩阵的方式表示所要输入的图)。而一个图分类任务可以有如下描述:给出一系列的带标签的图 D=\left \{ \left ( g_{1},y_{1}\right ),\left ( g_{2},y_{2} \right ) ,...\right \},其中 y_{i}\epsilon Y 为每个图 

  • 7
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值