一.BLC
1.原因:
sensor没有感光时,电子元器件存在暗电流,经过光电转换输出非0值。如果不去除,会影响isppipeline模块处理图像。
2.原理流程图:
(1)raw图所有像素减去同一个黑电平值
(2)raw图分颜色通道减去对应颜色通道黑电平值--->目前平台主流使用的BLC方法,联动增益
(3)raw图分块,减去对应块黑电平值--->sensor质量太差,区域黑电平不一致;实际工程中不可能每个sensor都标定
3.常见问题:
(1)高增益下由于标定黑电平不准导致图像偏红--->手动调整黑电平
代码:
https://github.com/WaterdropsKun/isppipeline_Python/blob/main/ISP_BLC/blc.py
二.DPC
1.原因:
受限于sensor的制造工艺,尤其是对于低成本的sensor来说,坏点数为100或者1000ppm(parts per million,百万分之一)是正常的。若sensor中存在坏点,经过图像的差值(如demosaic)和滤波过程,坏点的尺寸会变大(换点扩散),而且由于色彩校正和串扰补偿,坏点处颜色的强度和饱和度也会明显提高,因此需要在插值等过程之前对坏点进行校正。
2.原理流程图:
代码:
https://github.com/WaterdropsKun/isppipeline_Python/blob/main/ISP_DPC/dpc.py