【题目描述】
实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。
【解题思路】
- 求 xn,最简单的方法是通过循环将 n 个 x 乘起来,依次求 x1, x2, …, xn-1, xn,时间复杂度为 O(n)。
- 快速幂法 可将时间复杂度降低至 O(log2n),以下从 “二分法” 和 “二进制” 两个角度解析快速幂法。
转化为位运算:
- 向下整除 n//2 等价于 右移一位 n>>1 ;
- 取余数 n%2 等价于 判断二进制最右一位值 n & 1 ;
【算法流程】
- 当 x = 0 时:直接返回 0 (避免后续 x = 1 / x 操作报错);
- 初始化 res = 1 ;
- 当 n < 0 时:把问题转化至 n≥0 的范围内,即执行 x=1/x ,n = - n;
- 循环计算:当 n = 0 时跳出;
- 当 n&1=1 时:将当前 x 乘入 res (即 res∗=x );
- 执行 x = x2(即 x *= x );
- 执行 n 右移一位(即 n>>=1)。
- 返回 res。
class Solution:
def myPow(self, x: float, n: int) -> float:
if x == 0:
return 0
res = 1
if n < 0:
x, n = 1 / x, -n
while n:
if n & 1:
res *= x
x *= x
n >>= 1
return res
'''
作者:jyd
链接:https://leetcode-cn.com/problems/shu-zhi-de-zheng-shu-ci-fang-lcof/solution/mian-shi-ti-16-shu-zhi-de-zheng-shu-ci-fang-kuai-s/
'''
复杂度分析:
- 时间复杂度 O(log2n): 二分的时间复杂度 是对数级别。
- 空间复杂度 O(1) : res, b 等变量占用常数大小额外空间。
【打印版】
class Solution:
def myPow(self, x: float, n: int) -> float:
if x == 0:
return 0
res = 1 # res保留最终结果
if n < 0:
x, n = 1 / x, -n
while n:
print("x =",x,end='\t')
print("n =",n)
print('n&1=',n & 1,end='\t')
if n & 1: # 不为0 就是奇数
res *= x # res先保留多出的一项
print("n是奇数")
print("res =",res)
else:
print("n是偶数")
x *= x
n >>= 1
print()
return res
s = Solution()
print(s.myPow(3,5))