机器学习
sinat_31135199
一个坐着敲代码的人
展开
-
计算机视觉目标检测的框架与过程
转自:http://blog.csdn.net/zouxy09/article/details/7928771目标的检测大体框架:目标检测分为以下几个步骤:1、训练分类器所需训练样本的创建: 训练样本包括正样本和负样本;其中正例样本是指待检目标样本(例如人脸或汽车等),负样本指其它不包含目标的任意图片(如背景等),所有的样本图片都被归一化为同样的尺寸大小转载 2016-11-18 10:19:53 · 819 阅读 · 0 评论 -
压缩感知(Compressive Sensing)学习之(一)
转自:http://blog.csdn.net/zouxy09/article/details/8118313压缩感知(压缩传感,Compressive Sensing)理论是近年来信号处理领域诞生的一种新的信号处理理论,由D. Donoho(美国科学院院士)、E. Candes(Ridgelet, Curvelet创始人)及华裔科学家T. Tao(2006年菲尔兹奖获得者)等人提出,自诞转载 2016-11-20 17:31:12 · 637 阅读 · 0 评论 -
压缩感知(Compressive Sensing)学习之(二)
转自:http://blog.csdn.net/zouxy09/article/details/8118329下面就针对自己的了解,具体总结下压缩感知理论。由于自己也是这几天看到那个《Real-Time Compressive Tracking》 http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm 其涉转载 2016-11-20 17:53:08 · 1614 阅读 · 0 评论 -
压缩跟踪Compressive Tracking
转自:http://blog.csdn.net/zouxy09/article/details/8118360好了,学习了解了稀疏感知的理论知识后,终于可以来学习《Real-Time Compressive Tracking》这个paper介绍的感知跟踪算法了。自己英文水平有限,理解难免出错,还望各位不吝指正。 下面是这个算法的工程网站:里面包含了上面这篇论文、Matlab和C+转载 2016-11-20 19:54:05 · 1184 阅读 · 0 评论 -
Haar-like特征
Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。Haar特征分为四类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼转载 2016-11-20 22:11:02 · 1236 阅读 · 0 评论 -
TLD目标跟踪算法学习(一)
转自:http://security.asmag.com.cn/tech/201203/50168.html TLD跟踪系统最大的特点就在于能对锁定的目标进行不断的学习,以获取目标最新的外观特征,从而及时完善跟踪,以达到最佳的状态。也就是说,开始时只提供一帧静止的目标图像,但随着目标的不断运动,系统能持续不断地进行探测,获知目标在角度、距离、景深等方面的改变,并实时识别,经过一段时间转载 2017-04-25 11:38:27 · 3872 阅读 · 0 评论