图像金字塔的概念
- 图像金字塔的概念图
- 图像金字塔的作用:
如果我们对图片做特征提取,不光是要对原始图像进行特征提取还需要对多层的图像金字塔进行特征提取,每层提取的结果都不一样,我们需要整合到一起,达到丰富特征的效果。
高斯金字塔
图像的放大与缩小
- 高斯金字塔下采样(图像缩小):
- 将图像矩阵G与高斯内核卷积。
- 去掉所有偶数行和列。
- 高斯金字塔下采样(图像放大):
- 将图像在每个方向上扩大为原来的两倍,新增的行和列填充为0。
- 使用先前同样的高斯内核(x4)与放大后的图像做卷积操作,获得近似值。
构建高斯金字塔
- 我们先画一个可爱的维尼熊,然后打印出图像的大小
def cv_show(img,name):
cv2.imshow(name,img)
cv2.waitKey()
cv2.destroyAllWindows()
img=cv2.imread("weinixiong.jpg")
cv_show(img,'img')
print (img.shape)
#(346, 324, 3)
#放大
up=cv2.pyrUp(img)
cv_show(up,'up')
print (up.shape)
#缩小
down=cv2.pyrDown(img)
cv_show(down,'down')
print (down.shape)
#同样采样可以进行多次迭代
up2=cv2.pyrUp(up)
cv_show(up2,'up2')
print (up2.shape)
#(1384, 1296, 3)
#先执行上采样再执行下采样与原始图像的比较
up=cv2.pyrUp(img)
up_down=cv2.pyrDown(up)
cv_show(np.hstack((img,up_down)),'up_down')
- 我们不难看出经过上采样再进行下采样的图像并没有原始图像那么清晰。
拉普拉斯金字塔
拉普拉斯金字塔流程
- 拉普拉斯金字塔的计算原理就是每层的结果等于原始图像减去先执行下采样在执行上采样的结果。具体公式如下:
- 工作流程如下
- 低通滤波
- 缩小尺寸
- 放大尺寸
- 图像相减
代码实现
down=cv2.pyrDown(img)
down_up=cv2.pyrUp(down)
l_1=img-down_up
cv_show(l_1,'l_1')