商城的业务
电商、店铺、商品、营销、券、会员、积分、内容(feed流、信息流)、停车。
搞清楚业务,需要弄清楚 业务对象属性 以及 业务之间的关联关系。
会员:
会员级别,会员优惠,会员信息。
会员对象属性:会员id,会员级别,性别,生日,状态。
登录:
注册、登录、验证码、短信、一键登录、单点登录。
多系统的业务,最好做单点登录,避免多次重复的登录。
登录相关的,要注意安全校验。
营销:
营销的业务非常复杂,而且多变,难以复用。
常见的营销方式有:
折扣促销:限时折扣与满减、优惠券系统
秒杀系统:限时秒杀
积分兑礼:通过积分兑换礼品
会员营销体系:会员等级与积分、会员专属权益
社交裂变营销:拼团、分销返佣
内容与直播营销:短视频/直播带货 、UGC内容运营
数据驱动的精准营销:个性化推荐
活动营销引擎:营销规则引擎
O2O联动:线上下单门店自提、优惠券核销
营销数据监控:实时大屏
抽奖:抽奖营销,引流
券:
券的类型有多种:商品券、团购券、停车券、礼品券、抵用券、品牌券
积分
积分一般用于,积分兑礼。
做好风控,针对账号和ip进行记录和监控,发现有异常行为的账号或者ip,及时做名单限制,避免黑产。比如刷分。
积分的形式有多种:签到积分、拍照积分、OCR积分。
OCR积分:
拍照积分,人工审核的成本很高,OCR识别然后积分,能节省很多钱。
OCR积分的关键,在于识别率。识别率越高,节省的成本越高。
OCR技术现在已经非常成熟了,很多公司都有提供现成的OCR识别接口。
内容 (feed流、信息流)
Feed流相关属性:关注,粉丝。帖子。评论。点赞。收藏。
帖子相关属性:发帖人id,帖子标题,帖子内容,帖子关联的话题id,审核人id。
数据量比较大的 Feed流,一般都会用到 es搜索引擎 ,还有 redis缓存 。
像点赞这种业务,就可以通过 redis缓存实现。
电商:
业务领域: 店铺、商品、订单、支付、物流、退货、退款等。
店铺
店铺相关属性:店铺编码、店铺详情、联系电话、联系人、楼层编码、营业时间、店铺图片oss地址。
商品、商品详情
- 商品的属性
商品的属性一般会比较多,关联关系也多,会复杂一些,还要考虑性能问题。
商品相关属性:商品编码、商品名称、商品图片oss地址、地址、物流配送方式、对应店铺。
原始价格、折扣价格、库存、最小购买、最多购买、上下架状态等。
-
页面:
搜索,跳转到搜索结果页。
点击搜索结果页的商品,跳转到 商品详情页。
点击 商品详情,进入 订单结算页,就可以进行下单了。
根据不同的地址,计算出不同的运费。不同的规格,算出不同的优惠。 -
技术栈:
商品的场景一般都需要用到搜索,数据不仅要存储到数据库,还要同步到搜索引擎(比如 es)。
- SPU和 SKU:
SPU(Standard Product Unit):标准化产品单位。SPU是一个商品单位。
SKU(Stock Keeping Unit)库存量单位,即库存进出计量的单位, 可以是以件、盒、托盘等为单位。
Spu 指的是一组具有相同属性和功能的商品集合。
每个Spu都对应着多个Sku,而Sku指的是具体的商品实例。它们是商品的实际库存单位,每个Sku都有一个独特的编码,用于区分不同的商品。
- GMV:
GMV(Gross Merchandise Volume),即商品交易总额。它是指在一定时间内,电商平台上的所有商品或服务的成交总额。