GAN笔记_李弘毅教程(八)Photo Editing

Demo
可以根据调节参数来变化特征

要知道输入的每一维控制输出的什么特征。

G输入z,输出x;如果已知x(图片和标签),我们如何知道生成x的z(vector)?
学习一个encoder
Decoder不动,只train encoder,修正Encoder的最后一层。实际上可以拿D的参数来初始化Encoder的参数。

这样当给出一些image,就可以反推出它们的vector。
下图公式:长发vector=长发的图经过Encoder的vector平均-短发的图经过Encoder的vector平均

Demo:只能的photoshop

先train一个generater,从包dataset中sample出一些,从鞋sample出一些,从黑T恤中sample出一些,如果想改变T恤的颜色,既满足是T恤又满足变成红色的要求,就把code移动空间。

具体而言
要将黑色T恤反推到vector
方法一:将 G ( z ) G(z) G(z) x T {x^T} xT越接近越好,用梯度下降
方法二:用Auto-Encoder
方法三:将方法二作为方法一的初始值

如何找出一个${z^*}符合条件的?
1.要满足自己新提出来的要求
2.要满足还是原来那个商品,越接近越好
3.加一个constrain,生成结果放到D里,要和真实辨别不开的。

应用
超分辨率
第一张图 传统方法 模糊
第二张图 用network,部分细节模糊
第三张图 用GAN,清晰,但花纹会不一样

Image Completion图像完成
把缺失的部分补充完整
用conditional GAN
找一堆图片训练


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值