线性回归系数求解及Python实现

求解线性回归系数

已知 n n n个观测值集合 { ( x i , y i ) , i = 1 , 2 , . . . , n } \{(x_i, y_i), i=1,2,...,n\} {(xi,yi),i=1,2,...,n}, 求回归系数 a a a,使得预测值 y ^ i = x i a \hat{y}_i={x_ia} y^i=xia与真实值 y i y_i yi的偏差平方和最小,即找目标函数 s = ∑ ( y i − y ^ ) 2 s=\sum(y_i - \hat{y})^2 s=(yiy^)2的最小值。

  • 当为一元线性回归,则 y i = x i 0 ∗ a 0 + x i 1 ∗ a 1 y_i = x_{i0}*a_0 + x_{i1}*a_1 yi=xi0a0+xi1a1,这里 x 0 i x_{0i} x0i恒等于1,那么 a 0 a_0 a0可看作为偏移量常数(截距);
  • 当为多元( m m m元)线性回归时, x i , a i x_i,a_i xi,ai为向量,令 x i = ( x i 0 , x i 1 , x i 2 , . . . , x i m ) T \boldsymbol{x_i}= (x_{i0}, x_{i1}, x_{i2},...,x_{im})^T xi=(xi0,xi1,xi2,...,xim)T, a = ( a 0 , a 1 , a 2 , . . . , a m ) T \boldsymbol{a} = (a_{0}, a_{1}, a_{2},...,a_{m})^T a=(a0,a1,a2,...,am)T, 则 y i = ∑ j = 0 m x i j a i = x i T a {y_i}=\sum_{j=0}^m{x_{ij}a_i} =\boldsymbol{x_i}^T\boldsymbol{a} yi=j=0mxijai=xiTa.

因此,目标函数 s \boldsymbol{s} s可用矩阵形式表示:
s ( a ) = ∑ i = 1 n ( y i − x i T a ) 2 = ( y − X T a ) T ( y − X T a ) , \boldsymbol{s}(\boldsymbol{a})=\sum_{i=1}^n{({y_i}-\boldsymbol{x_i}^T\boldsymbol{a})^2} =(\boldsymbol{y} - \boldsymbol{X}^T\boldsymbol{a})^T (\boldsymbol{y} - \boldsymbol{X}^T\boldsymbol{a}), s(a)=i=1n(yixiTa)2=(yXTa)T(yXTa),

其中, X = ( x 1 , x 2 , . . . , x n ) T \boldsymbol{X}=(\boldsymbol{x_{1},x_{2},...,x_{n}})^T X=(x1,x2,...,xn)T, y = ( y 1 , y 2 , . . . , y n ) T \boldsymbol{y}=(y_1,y_2,...,y_n)^T y=(y1,y2,...,yn)T.

s \boldsymbol{s} s的最小值,则可对目标函数 s \boldsymbol{s} s求导,令 u = y − X T a \boldsymbol{u} = \boldsymbol{y} - \boldsymbol{X}^T\boldsymbol{a} u=yXTa
s ′ ( a ) = ( u T u ) ′ = u T u ′ + u T u ′ = 2 u T ( − X T ) = − 2 ( X u ) T . \boldsymbol{s}'(\boldsymbol{a}) = (\boldsymbol{u}^T\boldsymbol{u})' =\boldsymbol{u}^T\boldsymbol{u}'+\boldsymbol{u}^T\boldsymbol{u}'=2\boldsymbol{u}^T(-\boldsymbol{X}^T)=-2(\boldsymbol{X}\boldsymbol{u})^T. s(a)=(uTu)=uTu+uTu=2uT(XT)=2(Xu)T.

【标量对向量求导: ( u T v ) ′ = u T v ′ + v T u ′ (u^Tv)'=u^Tv'+v^Tu' (uTv)=uTv+vTu】(u(x): nx1, v(x):nx1)

s ′ ( a ) = 0 \boldsymbol{s}'(\boldsymbol{a})=0 s(a)=0,即 ( X ( y − X T a ) ) T = 0 (\boldsymbol{X} ( \boldsymbol{y} - \boldsymbol{X}^T\boldsymbol{a}))^T=0 (X(yXTa))T=0,解得 a ^ = ( X X T ) − 1 X y \hat{\boldsymbol{a}}=(\boldsymbol{XX}^T)^{-1}\boldsymbol{X}\boldsymbol{y} a^=(XXT)1Xy。 注意到, a ^ \hat{\boldsymbol{a}} a^的解中包含矩阵的逆,也就是说,只有当 X − 1 \boldsymbol{X}^{-1} X1存在时, a ^ \hat{\boldsymbol{a}} a^才有解。

上述方法求解回归系数是一般最小二乘法 o r d i n a r y   l e a s t   q u a r e s ordinary\ least\ quares ordinary least quares, OLS

python实现

python中numpy中包含线性代数模块(linalg, linear algebra)可用于求解 a x = b \boldsymbol{ax=b} ax=b

  • 一、导入数据

    from numpy import *
    import pandas as pd
    stu_score = '{mydata_path}/data.tsv'
    dataset = pd.read_csv(stu_score, index_col=False) 
    dataset.head()
    len(dataset)
    

    在这里插入图片描述

  • 二、数据转化为矩阵,并计算回归系数

    def load_data(data_file):
        data_arr = []
        label_arr = []
        with open(data_file, 'r') as f:
            header = f.readline()
            for line in f:
                mydata = line.strip().split(',')
                mydata.insert(0, 1)  # 假定偏移量是常数c,第一列补1(y = ax + c)
                data_info = [float(i) for i in mydata]
                data_arr.append(data_info[:-1])
                label_arr.append([data_info[-1]])  # 最后一列为对应y值
        return mat(data_arr), mat(label_arr)
    
    
    def stand_regres(x_mat, y_mat):
        x_mat_T = x_mat.T * x_mat # 下面判断x_mat_T是否可逆
        if linalg.det(x_mat_T) == 0:  # 若行列式|x_mat_T|不为0,则A可逆
            print('This matrix is singular, cannot do inverse!')  # 行列式为0
            return None
        else:
            # reg_coef = x_mat_T.I * (x_mat.T * y_mat)  # 可根据上面推到得到回归系数,
            reg_coef = linalg.solve(x_mat_T, x_mat.T * y_mat)  # 也可根据numpy中linalg模块中solve方法解ax + b = 0得到回归系数
        	return reg_coef
    
  • 三、数据可视化

    import matplotlib.pyplot as plt
    
    x_mat, y_mat = load_data(stu_score)  # header
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(x_mat[:,1].flatten().A[0], y_mat[:,0].flatten().A[0])  # plot scatter of original data
    
    regress_coef = stand_regres(x_mat, y_mat)
    x_copy = x_mat.copy()
    y_hat = x_copy * regress_coef
    ax.plot(x_copy[:,1], y_hat)  # plot regression line
    plt.show()
    

    在这里插入图片描述

  • 四、拟合直线的相关系数

    corrcoef(y_hat.T, y_mat.T)
    

    在这里插入图片描述
    附:相关系数计算公式:
    C o r r ( X , Y ) = C o v ( X , Y ) V a r ( X ) V a r ( Y ) , Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}, Corr(X,Y)=Var(X) Var(Y) Cov(X,Y),
    其中,

    • 协方差 C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY) - E(X)E(Y) Cov(X,Y)=E(XY)E(X)E(Y)
    • V a r ( X ) , V a r ( Y ) Var(X), Var(Y) Var(X),Var(Y)分别为 X , Y X,Y X,Y的方差
    • E ( X ) , E ( Y ) , E ( X Y ) E(X), E(Y), E(XY) E(X),E(Y),E(XY)分别为对用期望
    • 协方差>0,则X与Y正相关;协方差<0,则负相关;协方差=0,则独立/不相关;同样相关系数与协方差同符号(同正负零),相关系数反应 X , Y X,Y X,Y的相关程度,其取值范围是 − 1 &lt; C o r r ( X , Y ) &lt; 1 -1&lt;Corr(X, Y) &lt; 1 1<Corr(X,Y)<1, 即0<|Corr(X, Y)|<1,|Corr(X, Y)|的值越接近1,相关程度越高,反之,相关程度越低。
  • 9
    点赞
  • 74
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python求解回归方程的系数有多种方法。其中一种是使用全批量梯度下降法(Full batch gradient descent)。这种方法使用梯度下降的方式,通过多次迭代来逐步优化回归方程的系数。在代码中,可以看到使用了全批量梯度下降的函数`batch_gradient`来更新回归方程的系数。 另一种方法是使用正规方程法(Normal equation method)。这种方法通过求解矩阵方程来直接计算回归方程的系数。在代码中,虽然没有直接展示求解系数的过程,但是可以看到在函数`iteration`中调用了`batch_gradient`函数来进行迭代更新,从而求解回归方程的系数。 总结起来,在Python求解回归方程系数的过程包括使用全批量梯度下降法和正规方程法两种方法,通过多次迭代或直接求解矩阵方程来进行计算。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [Python线性回归方程中的系数向量](https://blog.csdn.net/weixin_42274933/article/details/123530111)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [基于jupyter notebook的python编程—–通过原理,求解分析线性回归方程的的待定系数a和判定系数R2](https://download.csdn.net/download/weixin_38564718/13750360)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值