[机器学习]Logistic回归梯度上升法与改进的随机梯度上升算法

本文介绍了多维空间下Sigmoid函数的原理,并详细阐述了Logistic回归中梯度上升算法的基本思想。通过提供的三个图片,读者可以更直观地理解梯度上升的过程。同时,提到了改进的随机梯度上升算法,为机器学习模型的优化提供了另一种有效方法。
摘要由CSDN通过智能技术生成

http://sbp810050504.blog.51cto.com/2799422/1608064/这个网址解释了多维空间的sigmoid函数与梯度上升算法的原理,大家可以参考一下。

from numpy import *
def loadDataSet():#读数据
    dataMat = []
    labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat


def sigmoid(intX):#sigmoid函数
    return 1.0 / (1 + exp(-intX))


def gradAscent(dataMatIn, classLabels):#Logistic回归梯度上升优化算法
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    m, n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n, 1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose() * error
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值