最近开始学习一个新的深度学习框架PyTorch。
框架中有一个非常重要且好用的包:torchvision,顾名思义这个包主要是关于计算机视觉cv的。这个包主要由3个子包组成,分别是:torchvision.datasets、torchvision.models、torchvision.transforms。
具体介绍可以参考官网:https://pytorch.org/docs/master/torchvision
具体代码可以参考github:https://github.com/pytorch/vision
torchvision.models这个包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用经典的网络结构,并且提供了预训练模型,可以通过简单调用来读取网络结构和预训练模型。
今天我们来解读一下Alexnet的源码实现。如果对AlexNet不是很了解 可以查看这里的论文笔记https://blog.csdn.net/sinat_33487968/article/details/83543406
如何使用呢?
import torchvision
model = torchvision.models.Alexnet(pretrained=True)
这样就可以获得网络的结构了,pretrained参数的意思是是否预训练