【pytorch torchvision源码解读系列—1】Alexnet

本文深入探讨PyTorch中的torchvision包,特别是torchvision.models,介绍了AlexNet模型的源码实现和使用方法,包括网络结构、预训练模型的获取以及初始化和前向传播过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近开始学习一个新的深度学习框架PyTorch。

框架中有一个非常重要且好用的包:torchvision,顾名思义这个包主要是关于计算机视觉cv的。这个包主要由3个子包组成,分别是:torchvision.datasets、torchvision.models、torchvision.transforms。

具体介绍可以参考官网:https://pytorch.org/docs/master/torchvision

具体代码可以参考github:https://github.com/pytorch/vision

torchvision.models这个包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用经典的网络结构,并且提供了预训练模型,可以通过简单调用来读取网络结构和预训练模型。

今天我们来解读一下Alexnet的源码实现。如果对AlexNet不是很了解 可以查看这里的论文笔记https://blog.csdn.net/sinat_33487968/article/details/83543406

如何使用呢?

import torchvision
model = torchvision.models.Alexnet(pretrained=True)

这样就可以获得网络的结构了,pretrained参数的意思是是否预训练

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值