4.7 PyTorch如何使用GPU

欢迎订阅本专栏:《PyTorch深度学习实践》
订阅地址:https://blog.csdn.net/sinat_33761963/category_9720080.html

  • 第二章:认识Tensor的类型、创建、存储、api等,打好Tensor的基础,是进行PyTorch深度学习实践的重中之重的基础。
  • 第三章:学习PyTorch如何读入各种外部数据
  • 第四章:利用PyTorch从头到尾创建、训练、评估一个模型,理解与熟悉PyTorch实现模型的每个步骤,用到的模块与方法。
  • 第五章:学习如何利用PyTorch提供的3种方法去创建各种模型结构。
  • 第六章:利用PyTorch实现简单与经典的模型全过程:简单二分类、手写字体识别、词向量的实现、自编码器实现。
  • 第七章:利用PyTorch实现复杂模型:翻译机(nlp领域)、生成对抗网络(GAN)、强化学习(RL)、风格迁移(cv领域)。
  • 第八章:PyTorch的其他高级用法:模型在不同框架之间的迁移、可视化、多个GPU并行计算。

import torch

# 使用GPU有两种方式

# 方式一:直接将变量放到指定设备上
device = torch.device('cpu')
dtype = torch.float

x = torch.randn(3,5, device=device, dtype=dtype)
print(x.device)

# 方式二:创建gpu环境
if torch.cuda.is_available():
    x = torch.randn(3, 5)
    print('use cuda')
    x = x.cuda()
    print(x.device)
cpu
©️2020 CSDN 皮肤主题: 终极编程指南 设计师:CSDN官方博客 返回首页