【神经网络基础】第一课--逻辑回归

这篇博客介绍了逻辑回归的基础知识,包括二分类问题的定义、逻辑回归模型的构建、损失函数的解释以及梯度下降法在逻辑回归中的应用。通过实例解释了如何使用sigmoid函数将线性函数转换为概率输出,并探讨了向量化在优化计算效率中的作用。
摘要由CSDN通过智能技术生成

课程来源:吴恩达 深度学习课程 《神经网络基础》
笔记整理:王小草
时间:2018年5月15日


1.什么是二分类

1.1 二分类?

给定一张图片,要识别出这张图片,“是猫”或“不是猫“的问题就是二分类问题。
输入以x表示,输出以y表示。
image_1cd2ged0lukucr91rmpiug1d8l9.png-106.4kB

如何表示图片:计算机是如何计算图片的呢?
一张图片实际上由一堆像素构成,一堆像素可以由矩阵表示出来。如果你输入的是一张64*64像素的彩色图片,那么表示成三个64*64的矩阵(彩色图片有RGB三个通道,每个通道对应一个矩阵)
image_1cd2gnh5nj9jd703bt222170i16.png-57.6kB

将这些像素亮度转换成一个向量形式的特征x。维度是64*64*3=12288的向量
image_1cd2gr53t1sb0s996065dm7mg1j.png-20kB

讲特征向量输入模型,预测输出结果标签y是1还是0(比如1代表有猫,0代表无猫)

1.2 符号约定

定义一下接下去所有课程中都会统一用到的符号。

一个样本用(x,y)表示,x是nx维的实属向量,y是一个属于{0,1}集合内的整数
image_1cd2h5v2ljnl1tbru7vgc81g1823.png-12.8kB

符号表示:
m个样本如下表示:
image_1cd2haca916u51t71bvm8ojkas2g.png-20.9kB
样本会分为训练集于测试集,训练集的数目用Mtrain表示,测试集的数目用Mtest表示。

矩阵表示:
用矩阵表示样本的特征x,每一列是一个样本特征,若有m个样本的话,每个样本有nx维的话,该矩阵就有nx * m大小
image_1cd2hh1aaufl1ljc1ivk1n22bn64t.png-28kB
注:平时会每行放一个样本,但在神经网络中1列一个样本会更方便计算。

用矩阵表示样本的标签y,大小为1 * m的矩阵
image_1cd2ho2nq5mm10ao1s458991du95a.png-12.9kB

2.logistic回归

对于二分类,输入特征向量x, 期望输出一个概率,根据这个概率去判断是输出1还是0.
image_1cd2i30ds1bmi1numa3q1vg0tcf5n.png-14.9kB

那要选择什么样的函数或模型,去做二分类呢?若使用线性函数:
参数:image_1cd2i70albo812f6u1itrc1ubo64.png-8.8kB
输出:image_1cd2i7ra0huj1c94jt8mnc1bqh6h.png-6.5kB
可见输出的y并非是一个0-1之间的概率,因此不能选用。

于是逻辑回归在线性函数的外面又加了一层sigmoid函数:
image_1cd2ic0on1upnu29c791mpll87e.png-11.7kB

sigmoid函数长这样:
image_1cd2ie7d5102hspv1oivnk5vur8e.png-14.6kB
将线性函数的输出作为z,即sigmoid函数的输入。而sigmoid的输出是分布再[0,1]之间的值,符合概率取值。

sigmoid函数的公式:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值