概率论与数理统计:概率论基础

1. 一维随机变量

1.1 离散型随机变量

概率函数

X X X为离散型随机变量,其全部可能值为 { a 1 , a 2 , ⋯   } \{a_1,a_2,\cdots\} {a1,a2,},则:
P ( X = a i ) = p i ( i = 1 , 2 , ⋯   ,    p i ≥ 0 ,    p 1 + p 2 + ⋯ = 1 ) P(X=a_i)=p_i\quad(i=1,2,\cdots, \,\, p_i\geq0, \,\, p_1+p_2+\cdots=1) P(X=ai)=pi(i=1,2,,pi0,p1+p2+=1)

称为 X X X的概率函数。


分布函数

X X X为一随机变量,则函数
F ( x ) = P ( X ≤ x ) ( − ∞ &lt; x &lt; ∞ ) F(x)=P(X \leq x) \quad(-\infin&lt;x&lt;\infin) F(x)=P(Xx)(<x<)

称为 X X X的分布函数。

性质:
1 。 \quad\quad 1^。 1 F ( x ) F(x) F(x)非递降函数,当 x 1 &lt; x 2 x_1&lt;x_2 x1<x2时, F ( x 1 ) &lt; F ( x 2 ) F(x_1)&lt;F(x_2) F(x1)<F(x2)

2 。 \quad\quad 2^。 2 x → ∞ x \rightarrow \infin x时, F ( x ) → 1 F(x) \rightarrow 1 F(x)1;当 x → − ∞ x \rightarrow -\infin x时, F ( x ) → 0 F(x) \rightarrow 0 F(x)0;


常见分布
  1. 二项分布: X ∼ B ( n , p ) X \sim B(n,p) XB(n,p)
    P ( X = k ) = C n k p k ( 1 − p ) n − k ( i = 0 , 1 , ⋯ &ThinSpace; , n ) P(X=k)=C_n^kp^k(1-p)^{n-k} \quad (i=0,1,\cdots,n) P(X=k)=Cnkpk(1p)nk(i=0,1,,n)

  2. 泊松分布: X ∼ P ( λ ) X \sim P(\lambda) XP(λ)
    P ( X = k ) = λ k k ! e − λ ( k = 0 , 1 , ⋯ &ThinSpace; ) P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda} \quad(k=0,1,\cdots) P(X=k)=k!λkeλ(k=0,1,)
    适用于 X X X表示一定的时间或空间内事件发生的个数的场合。

  3. 二项分布与泊松分布关系
    X ∼ B ( n , λ / n ) X \sim B(n,\lambda /n) XB(n,λ/n),则:
    P ( X = k ) = C n k ( λ n ) k ( 1 − λ n ) n − k P(X=k)=C_n^k(\frac{\lambda}{n})^k(1-\frac{\lambda}{n})^{n-k} P(X=k)=Cnk(nλ)k(1nλ)nk
    n → ∞ n \rightarrow \infin n λ / n → 0 \lambda /n \rightarrow 0 λ/n0 时,有:
    lim ⁡ n → ∞ C n k n k = 1 k ! , lim ⁡ n → ∞ ( 1 − λ n ) n = e − λ \lim_{n\rightarrow \infin}\frac{C_n^k}{n^k}=\frac{1}{k!},\quad\lim_{n\rightarrow \infin}(1-\frac{\lambda}{n})^n = e^{-\lambda} nlimnkCnk=k!1,nlim(1nλ)n=eλ
    故特殊条件下的二项分布近似等于泊松分布


1.2 连续型随机变量

密度函数

设连续型随机变量 X X X有概率分布函数 F ( x ) F(x) F(x),则函数
f ( x ) = F ′ ( x ) f(x)=F&#x27;(x) f(x)=F(x)

称为 X X X的概率密度函数,它反映了概率在 x x x点处的密集程度。

性质:
1 。 \quad\quad 1^。 1 f ( x ) ≥ 0 f(x)\geq0 f(x)0

2 。 \quad\quad 2^。 2 ∫ − ∞ ∞ f ( x ) d x = 1 \int_{-\infin}^{\infin}f(x)dx=1 f(x)dx=1

3 。 \quad\quad 3^。 3 F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-\infin}^xf(t)dt F(x)=xf(t)dt

4 。 \quad\quad 4^。 4对任何常数 a &lt; b a&lt;b a<b,有 P ( a ≤ X ≤ b ) = F ( b ) − F ( a ) = ∫ a b f ( x ) d x P(a\leq X \leq b)=F(b)-F(a)=\int_a^bf(x)dx P(aXb)=F(b)F(a)=abf(x)dx

图1. 概率分布函数(左)与概率密度函数(右)

常见分布
  1. 正太分布: X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2)
    f ( x ) = 1 2 π σ e − ( x − μ ) 2 / 2 σ 2 ( − ∞ &lt; x &lt; ∞ ) f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-{(x-\mu)^2}/2\sigma^2} \quad(-\infin &lt; x &lt; \infin) f(x)=2π σ1e(xμ)2/2σ2(<x<)
    μ = 0 , σ 2 = 1 \mu=0,\sigma^2=1 μ=0,σ2=1 , X ∼ N ( 0 , 1 ) ,X \sim N(0,1) XN(0,1),称为标准正太分布,记其密度函数和分布函数分别为 φ ( x ) \varphi(x) φ(x) Φ ( x ) \varPhi(x) Φ(x),则
    φ ( x ) = 1 2 π e − x 2 / 2 \varphi(x)=\frac{1}{\sqrt {2\pi}}e^{-x^2/2} φ(x)=2π 1ex2/2
    X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2),则 Y = ( X − μ ) / σ ∼ N ( 0 , 1 ) Y=(X-\mu)/\sigma\sim N(0,1) Y=(Xμ)/σN(0,1)

    性质:
    1 。 \quad\quad 1^。 1 Φ ( x ) + Φ ( − x ) = 1 \varPhi(x)+\varPhi(-x)=1 Φ(x)+Φ(x)=1

  2. 指数分布
    f ( n ) = { λ e − λ x , x &gt; 0 0 , x ≤ 0 F ( x ) = ∫ − ∞ x f ( t ) d t = { 1 − e − λ x , x &gt; 0 0 , x ≤ 0 \begin{aligned} &amp; f(n)= \begin{cases} \lambda e^{-\lambda x},\quad x&gt;0\\ 0, \quad\quad\quad x\leq0 \end{cases} \\\\ &amp; F(x)=\int_{-\infin}^xf(t)dt= \begin{cases} 1-e^{-\lambda x},\quad &amp;x&gt;0\\ 0, \quad\quad\quad\quad &amp;x\leq0 \end{cases} \end{aligned} f(n)={λeλx,x>00,x0F(x)=xf(t)dt={1eλx,0,x>0x0
    适用于无老化的寿命分布场合, λ \lambda λ为失效率,失效率越高,寿命越短。

  3. 均匀分布: X ∼ R ( a , b ) X \sim R(a,b) XR(a,b)
    设随机变量 X X X有概率密度函数
    f ( x ) = { 1 / ( b − a ) , a ≤ x ≤ b 0 , 其 他 f(x)= \begin{cases} \begin{aligned} 1/(b-a), \quad &amp; a \leq x\leq b \\ 0, \quad\quad\quad\quad &amp;其他 \end{aligned} \end{cases} f(x)={1/(ba),0,axb
    X X X服从区间 [ a , b ] [a,b] [a,b]上的均匀分布。

    均匀分布 R ( a , b ) R(a,b) R(a,b)的分布函数为:
    F ( x ) = { 0 , x ≤ a ( x − a ) / ( b − a ) , a &lt; x &lt; b 1 , x ≥ b F(x)= \begin{cases} 0, &amp; \text x\leq a \\ (x-a)/(b-a), &amp;\text a&lt;x&lt;b\\ 1,&amp; \text x\geq b \end{cases} F(x)=0,(xa)/(ba),1,xaa<x<bxb


2. 多维随机变量

离散型概率函数

{ a i 1 , a i 2 , ⋯ &ThinSpace; } \{a_{i1},a_{i2},\cdots \} {ai1,ai2,}记为 X i X_i Xi的全部可能值 ( i = 1 , 2 , ⋯ &ThinSpace; ) (i=1,2,\cdots) (i=1,2,),则事件 { X 1 = a 1 j 1 , ⋯ &ThinSpace; , X n = a n j 1 } \{X_1=a_{1j_1},\cdots,X_n=a_{nj_1}\} {X1=a1j1,,Xn=anj1}的概率
p ( j 1 , ⋯ &ThinSpace; , j n ) = P ( X 1 = a 1 j 1 , ⋯ &ThinSpace; , X n = a n j n ) ( j 1 = 1 , 2 , ⋯ &ThinSpace; ; ⋯ &ThinSpace; ; j n = 1 , 2 , ⋯ &ThinSpace; ) p(j_1,\cdots,j_n)=P(X_1=a_{1j_1},\cdots,X_n=a_{nj_n}) \quad (j_1=1,2,\cdots;\cdots;j_n=1,2,\cdots) p(j1,,jn)=P(X1=a1j1,,Xn=anjn)(j1=1,2,;;jn=1,2,)

称为随机变量 X = ( X 1 , ⋯ &ThinSpace; , X n ) X=(X_1,\cdots,X_n) X=(X1,,Xn)的概率函数或概率分布,且概率函数满足条件
p ( j 1 , ⋯ &ThinSpace; , j n ) ≥ 0 , ∑ j n ⋯ ∑ j 2 ∑ j 1 p ( j 1 , ⋯ &ThinSpace; , j n ) = 1 p(j_1,\cdots,j_n) \geq 0, \quad \sum_{j_n} \cdots \sum_{j_2} \sum_{j_1}p(j_1,\cdots,j_n)=1 p(j1,,jn)0,jnj2j1p(j1,,jn)=1

如上表中 X 1 X_1 X1的可能值为 { − 1 , 0 , 5 } \{-1, 0, 5\} {1,0,5} X 2 X_2 X2的可能值为 { 1 , 3 } \{1, 3\} {13},则
P ( 1 , 1 ) = P ( X 1 = a 11 = − 1 , X 2 = a 21 = 1 ) = 0.17 &ThinSpace; P ( 3 , 2 ) = P ( X 1 = a 13 = 5 , X 2 = a 22 = 3 ) = 0.25 P(1, 1)=P(X_1=a_{11}=-1, X_2=a_{21}=1)=0.17 \\\,\\P(3, 2)=P(X_1=a_{13}=5, X_2=a_{22}=3)=0.25 P(1,1)=P(X1=a11=1,X2=a21=1)=0.17P(3,2)=P(X1=a13=5,X2=a22=3)=0.25


连续型(概率)密度函数

f ( x 1 , ⋯ &ThinSpace; , x n ) f(x_1, \cdots, x_n) f(x1,,xn)是定义在 R n R^n Rn上的非负函数,是对 R n R^n Rn中的任何集合 A A A,有
P ( X ) ∈ A = ∫ ⋯ ∫ f ( x 1 , ⋯ &ThinSpace; , x 2 ) d x 1 ⋯ d x n P(X) \in A = \int \cdots \int f(x_1, \cdots,x_2)dx_1\cdots dx_n P(X)A=f(x1,,x2)dx1dxn
f f f X X X的(概率)密度函数。


分布函数

F ( x 1 , x 2 , ⋯ &ThinSpace; , x n ) = P ( X 1 ≤ x 1 , X 2 ≤ x 2 , ⋯ &ThinSpace; , X n ≤ x n ) F(x_1, x_2, \cdots, x_n) =P(X_1 \leq x_1, X_2 \leq x_2, \cdots, X_n \leq x_n) F(x1,x2,,xn)=P(X1x1,X2x2,,Xnxn)


边缘分布

X = ( X 1 , ⋯ &ThinSpace; , X n ) X=(X_1,\cdots,X_n) X=(X1,,Xn)为一个 n n n维随机向量, X X X的分布为 F F F( n n n维)。对于 X X X的每个分量 X i X_i Xi,其为一维随机变量且具有一定的分布 F i F_i Fi,称 F i F_i Fi为随机向量 X X X或其分布 F F F的边缘分布。
P ( X 1 = a 1 k ) = ∑ j 2 , ⋯ &ThinSpace; , j n p ( k , j 2 , ⋯ &ThinSpace; , j n ) , ( k = 1 , 2 , ⋯ &ThinSpace; ) P(X_1=a_{1k})=\sum_{j_2,\cdots,j_n} p(k,j_2,\cdots,j_n), \quad (k=1,2, \cdots) P(X1=a1k)=j2,,jnp(k,j2,,jn),(k=1,2,)
如上表1中 X 1 = { a 11 , a 12 , a 13 } = { − 1 , 0 , 5 } X_1=\{a_{11}, a_{12}, a_{13}\}=\{-1,0,5\} X1={a11,a12,a13}={1,0,5},因此
P ( X 1 = 0 ) = P ( X 1 = a 12 ) = p ( 2 , 1 ) + p ( 2 , 2 ) = P ( X 1 = 0 , X 2 = 1 ) + P ( X 1 = 0 , X 2 = 3 ) = 0.05 + 0.28 = 0.33 \begin{aligned} P(X_1=0) &amp;=P(X_1=a_{12})\\ &amp;=p(2,1)+p(2,2) \\ &amp;=P(X_1=0,X_2=1) + P(X_1=0,X_2=3) \\ &amp;= 0.05+0.28=0.33 \end{aligned} P(X1=0)=P(X1=a12)=p(2,1)+p(2,2)=P(X1=0,X2=1)+P(X1=0,X2=3)=0.05+0.28=0.33


边缘密度

X = ( X 1 , X 2 ) X=(X_1,X_2) X=(X1,X2)有概率密度函数 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2),则 X 1 X_1 X1的分布函数为 F 1 ( x 1 ) = P ( X 1 ≤ x 1 ) F_1(x_1)=P(X_1\leq x_1) F1(x1)=P(X1x1),等价于 P ( X 1 ≤ x 1 , X 2 ≤ ∞ ) P(X_1\leq x_1, X_2 \leq \infin) P(X1x1,X2),即
F 1 ( x 1 ) = P ( X 1 ≤ x 1 ) = ∫ − ∞ x 1 d t 1 ∫ − ∞ ∞ f ( t 1 , t 2 ) d t 2 F_1(x_1)=P(X_1 \leq x_1)=\int_{-\infin}^{x_1}dt_1 \int_{-\infin}^\infin f(t_1,t_2)dt_2 F1(x1)=P(X1x1)=x1dt1f(t1,t2)dt2
∫ − ∞ ∞ f ( t 1 , t 2 ) d t 2 \int_{-\infin}^\infin f(t_1,t_2)dt_2 f(t1,t2)dt2 t 1 t_1 t1的函数,记为 f 1 ( t 1 ) f_1(t_1) f1(t1),则
F 1 ( x 1 ) = ∫ − ∞ x 1 f 1 ( t 1 ) d t 1 &ThickSpace; ⟹ &ThickSpace; d F 1 ( x 1 ) / d x 1 = f 1 ( x 1 ) = ∫ − ∞ ∞ f ( x 1 , x 2 ) d x 2 F_1(x_1)=\int_{-\infin}^{x_1}f_1(t_1)dt_1 \implies dF_1(x_1)/dx_1=f_1(x_1)=\int_{-\infin}^\infin f(x_1,x_2)dx_2 F1(x1)=x1f1(t1)dt1dF1(x1)/dx1=f1(x1)=f(x1,x2)dx2
推广至 X = ( X 1 , ⋯ &ThinSpace; , X n ) X=(X_1,\cdots,X_n) X=(X1,,Xn),即
f 1 ( x 1 ) = ∫ − ∞ ∞ ⋯ ∫ − ∞ ∞ f ( x 1 , ⋯ &ThinSpace; , x n ) d x 2 ⋯ d x n f_1(x_1)=\int_{-\infin}^\infin\cdots\int_{-\infin}^\infin f(x_1,\cdots,x_n)dx_2 \cdots dx_n f1(x1)=f(x1,,xn)dx2dxn


离散条件概率分布

设二维随机变量 X = ( X 1 , X 2 ) X=(X_1,X_2) X=(X1,X2) ( X 1 , X 2 ) (X_1,X_2) (X1,X2)的联合概率分布为
p i j = P ( X 1 = a i , X 2 = b j ) , ( i , j = 1 , 2 , ⋯ &ThinSpace; ) p_{ij}=P(X_1=a_i,X_2=b_j), \quad (i,j=1,2,\cdots) pij=P(X1=ai,X2=bj),(i,j=1,2,)

P ( X 1 = a i ∣ X 2 = b j ) = P ( X 1 = a i , X 2 = b j ) / P ( X 2 = b j ) = p i j / ∑ k p k j , ( i , j = 1 , 2 , ⋯ &ThinSpace; ) P(X_1=a_i|X_2=b_j)=P(X_1=a_i,X_2=b_j)/P(X_2=b_j)=p_{ij} / \sum_k p_{kj} , \quad (i,j=1,2,\cdots) P(X1=aiX2=bj)=P(X1=ai,X2=bj)/P(X2=bj)=pij/kpkj,(i,j=1,2,)

如表1中 P ( X 2 = 3 ∣ X 1 = 0 ) = 0.28 / 0.33 = 0.848 P(X_2=3|X_1=0)=0.28/0.33=0.848 P(X2=3X1=0)=0.28/0.33=0.848


连续型随机变量分布

设二维随机变量 X = ( X 1 . X 2 ) X=(X_1.X_2) X=(X1.X2)有概率密度函数 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2),则
P ( X 1 ≤ x 1 ∣ a ≤ X 2 ≤ b ) = P ( X 1 ≤ x 1 , a ≤ X 2 ≤ b ) / P ( a ≤ X 2 ≤ b ) = ∫ − ∞ x 1 d t 1 ∫ a b f ( t 1 , t 2 ) d t 2 / ∫ a b f 2 5 ( t 2 ) d t 2 \begin{aligned} P(X_1 \leq x_1 | a \leq X_2 \leq b) &amp; = P(X_1 \leq x_1, a \leq X_2 \leq b)/P(a \leq X_2 \leq b) \\ &amp; = \int_{-\infin}^{x_1}dt_1 \int_a^bf(t_1,t_2)dt_2 {\large/} \int_a^bf_25(t_2)dt_2 \end{aligned} P(X1x1aX2b)=P(X1x1,aX2b)/P(aX2b)=x1dt1abf(t1,t2)dt2/abf25(t2)dt2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值