概率论与数理统计:数字特征

1、数学期望

离散型数据

设随机变量 X X X只取得有限个可能值 a 1 , ⋯   , a m a_1,\cdots,a_m a1,,am,其概率分布为 P ( X = a i ) = p i , ( i = 1 , ⋯   , m ) P(X=a_i)=p_i,\quad (i=1,\cdots,m) P(X=ai)=pi,(i=1,,m),则 X X X的数学期望,即
E ( X ) ∗ = E X = a 1 p 1 + a 2 p 2 + ⋯ a m p m E(X)^*=EX=a_1p_1+a_2p_2+\cdots a_mp_m E(X)=EX=a1p1+a2p2+ampm
一般理解为以概率为权的加权平均。

N N N次试验中 X X X的取值,记为
X ˉ = ( a 1 N 1 + a 2 N 2 + ⋯ + a m N m ) / N = a 1 ( N 1 / N ) + a 2 ( N 2 / N ) + ⋯ + a m ( N m / N ) \begin{aligned} \bar X &=(a_1N_1+a_2N_2+\cdots+a_mN_m)/N \\ &=a_1(N_1/N) + a_2(N_2/N) + \cdots + a_m(N_m/N) \end{aligned} Xˉ=(a1N1+a2N2++amNm)/N=a1(N1/N)+a2(N2/N)++am(Nm/N)

其中 N i / N N_i/N Ni/N是事件 X = a i {X=a_i} X=ai N N N次试验中的频率,当 N N N很大时 N i / N N_i/N Ni/N接近 p i p_i pi X X X的数学期望 E ( X ) E(X) E(X),可认为在大量试验之下 X X X在各次试验中取值的平均。


连续型数据

X X X有概率密度函数 f ( x ) f(x) f(x),如果
∫ − ∞ ∞ ∣ x ∣ f ( x ) d x ≤ ∞ \int_{-\infin}^{\infin}|x|f(x)dx \leq \infin xf(x)dx
则称
E ( x ) = ∫ − ∞ ∞ x f ( x ) d x E(x)=\int_{-\infin}^{\infin}xf(x)dx E(x)=xf(x)dx
X X X的数学期望(由 E ( X ′ ) ≈ ∑ i x i f ( x i ) Δ x i E(X') \approx \sum_i x_i f(x_i) \Delta x_i E(X)ixif(xi)Δxi推导而来)。


常见分布的数学期望

(1)设 X X X服从泊松分布 X ∼ P ( λ ) X \sim P(\lambda) XP(λ),则
E ( X ) = ∑ i = 0 ∞ i λ i i ! e − λ = λ e − λ ∑ i = 1 ∞ λ i − 1 ( i − 1 ) ! = λ e − λ ∑ i = 0 ∞ λ i i ! = λ E(X)=\sum_{i=0}^\infin i \frac{\lambda^i}{i!}e^{-\lambda}=\lambda e^{-\lambda} \sum_{i=1}^\infin \frac{\lambda^{i-1}}{(i-1)!}=\lambda e^{-\lambda} \sum_{i=0}^\infin \frac{\lambda^i}{i!}=\lambda E(X)=i=0ii!λieλ=λeλi=1(i1)!λi1=λeλi=0i!λi=λ

(2)设 X X X服从 [ a , b ] [a,b] [a,b]区间的均匀分布,则
E ( X ) = 1 b − a ∫ a b x d x = 1 2 ( a + b ) E(X)=\frac{1}{b-a}\int_a^bxdx=\frac{1}{2}(a+b) E(X)=ba1abxdx=21(a+b)

(3)若 X X X服从指数分布,则
E ( X ) = λ ∫ 0 ∞ x e − λ x d x = λ − 1 ∫ 0 ∞ x e − x d x = λ − 1 Γ ( 2 ) = λ − 1 E(X)=\lambda \int_0^\infin xe^{-\lambda x}dx=\lambda^{-1}\int_0^\infin xe^{-x}dx=\lambda^{-1}\Gamma(2)=\lambda^{-1} E(X)=λ0xeλxdx=λ10xexdx=λ1Γ(2)=λ1

(4)设 X X X服从正太分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),则
E ( X ) = 1 2 π σ ∫ − ∞ ∞ x e − ( x − u ) 2 2 σ 2 d x E(X)=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^\infin xe^{\large -\frac{(x-u)^2}{2\sigma^2}}dx E(X)=2π σ1xe2σ2(xu)2dx

\quad x = μ + σ t x=\mu + \sigma t x=μ+σt,则由对称性容易推得
E ( X ) = 1 2 π ∫ − ∞ ∞ ( μ + σ t ) e − t 2 / 2 d t = u E(X)=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^\infin (\mu + \sigma t)e^{-t^2/2}dt=u E(X)=2π 1(μ+σt)et2/2dt=u


数学期望性质

(1)若干个随机变量之和的期望等于各变量的期望之和,即
E ( X 1 + X 2 + ⋯ + X n ) = E ( X 1 ) + E ( X 2 ) + ⋯ + E ( X n ) E(X_1+X_2+\cdots+X_n)=E(X_1)+E(X_2)+\cdots+E(X_n) E(X1+X2++Xn)=E(X1)+E(X2)++E(Xn)

(2)若干个独立随机变量之积的期望等于各变量的期望之和,即
E ( X 1 X 2 ⋯ X n ) = E ( X 1 ) E ( X 2 ) ⋯ E ( X n ) E(X_1X_2\cdots X_n)=E(X_1)E(X_2) \cdots E(X_n) E(X1X2Xn)=E(X1)E(X2)E(Xn)

(3)设随机变量 X X X为离散型,有分布 P ( X = a i ) = p i   ( i = 1 , 2 , ⋯   ) P(X=a_i)=p_i\,(i=1,2,\cdots) P(X=ai)=pi(i=1,2,);或者为连续型,有概率密度函数 f ( x ) f(x) f(x),则
E ( g ( X ) ) = ∑ i g ( a i ) p i 或 E ( g ( X ) ) = ∫ − ∞ ∞ g ( x ) f ( x ) d x E(g(X))=\sum_i g(a_i)p_i \quad 或 \quad E(g(X))=\int_{-\infin}^\infin g(x)f(x)dx E(g(X))=ig(ai)piE(g(X))=g(x)f(x)dx

\quad\quad 特殊情况下,若 c c c为常数,则 E ( c X ) = c E ( X ) E(cX)=cE(X) E(cX)=cE(X)

(4)设连续型随机变量 X X X的分布函数为 F ( x ) F(x) F(x),则满足条件
P ( X ≤ m ) = F ( m ) = 1 / 2 P(X \leq m)=F(m)=1/2 P(Xm)=F(m)=1/2

的数 m m m称为 X X X或分布 F F F的中位数。


2、方差与矩

方差

X X X为随机变量,分布为 F F F,则
V a r ( X ) = E ( X − E X ) 2 = E ( X 2 ) − ( E X ) 2 Var(X)=E(X-EX)^2=E(X^2)-(EX)^2 Var(X)=E(XEX)2=E(X2)(EX)2

称为 X X X(或分布 F F F)的方差,其平方根 V a r ( X ) \sqrt{Var(X)} Var(X) 称为 X X X(或分布 F F F)的标准差。

性质:
1 。 \quad1^。 1常数的方差为0;

2 。 \quad2^。 2 c c c为常数,则 V a r ( X + c ) = V a r ( X ) Var(X+c)=Var(X) Var(X+c)=Var(X)

3 。 \quad3^。 3 c c c为常数,则 V a r ( c X ) = c 2 V a r ( X ) Var(cX)=c^2Var(X) Var(cX)=c2Var(X)

如对于随机变量 X = { 1 , 2 , 3 } X=\{1,2,3\} X={1,2,3},均值 X ˉ = 2 \bar X=2 Xˉ=2,则方差
S 2 = ( 1 − 2 ) 2 + ( 2 − 2 ) 2 + ( 3 − 2 ) 2 3 S^2=\frac{(1-2)^2+(2-2)^2+(3-2)^2}{3} S2=3(12)2+(22)2+(32)2

可视为 { 1 , 2 , 3 } \{1,2,3\} {1,2,3}发生的概率均为 1 / 3 1/3 1/3


X X X为随机变量, c c c为常数, k k k为正整数,则量 E [ ( X − c ) k ] E[(X-c)^k] E[(Xc)k]称为 X X X关于 c c c点的 k k k阶矩。

(1) c = 0 c=0 c=0,此时 α k = E ( X k ) \alpha_k=E(X^k) αk=E(Xk)称为 X X X k k k阶原点矩;

(2) c = E ( X ) c=E(X) c=E(X),此时 μ = E [ ( X − E X ) k ] \mu=E[(X-EX)^k] μ=E[(XEX)k]称为 X X X的k阶中心矩;

即一阶原点矩就是期望,二阶中心矩就是方差。


协方差

C o v ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E[(X-E(X))(Y-E(Y))]=E(XY)-E(X)E(Y) Cov(X,Y)=E[(XE(X))(YE(Y))]=E(XY)E(X)E(Y)
性质:
1 。 \quad\quad1^。 1 X X X Y Y Y独立,则 C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0

2 。 \quad\quad2^。 2 C o v 2 ( X , Y ) ≤ σ 1 2 σ 2 2 Cov^2(X,Y) \leq \sigma_1^2 \sigma_2^2 Cov2(X,Y)σ12σ22,当前仅当 X X X Y Y Y有严格线形关系时,等号成立(即 Y = a + b X Y=a+bX Y=a+bX);

证明: 考虑下式
E [ t ( X − E ( X ) ) + ( Y − E ( Y ) ) ] 2 = σ 1 2 t 2 + 2 C o v ( X , Y ) t + σ 2 2 E[t(X-E(X))+(Y-E(Y))]^2=\sigma_1^2t^2+2Cov(X,Y)t+\sigma_2^2 E[t(XE(X))+(YE(Y))]2=σ12t2+2Cov(X,Y)t+σ22

\quad 显然上式对于所有的 t t t均成立,由一元二次方程大于零,知系数满足
σ 1 2 σ 2 2 ≥ C o v 2 ( X , Y ) \sigma_1^2\sigma_2^2 \geq Cov^2(X,Y) σ12σ22Cov2(X,Y)

\quad 若上式等号成立,则有
σ 1 2 t 2 + 2 C o v ( X , Y ) t + σ 2 2 = ( t σ 1 + σ 2 ) 2 = 0 \sigma_1^2t^2+2Cov(X,Y)t+\sigma_2^2=(t\sigma_1+\sigma_2)^2=0 σ12t2+2Cov(X,Y)t+σ22=(tσ1+σ2)2=0

\quad t 0 = − σ 2 / σ 1 t_0=-\sigma_2/\sigma_1 t0=σ2/σ1时,等式成立。由于 E 2 ( Z ) E^2(Z) E2(Z)的非负性,知性质2得证,即
t ( X − E ( X ) ) + ( Y − E ( Y ) ) = 0 t(X-E(X))+(Y-E(Y))=0 t(XE(X))+(YE(Y))=0


相关系数

C o r r ( X , Y ) = C o v ( X , Y ) / ( σ 1 σ 2 ) Corr(X,Y)=Cov(X,Y)/(\sigma_1 \sigma_2) Corr(X,Y)=Cov(X,Y)/(σ1σ2)
性质:
1 。 \quad\quad1^。 1 X X X Y Y Y独立,则 C o r r ( X , Y ) = 0 Corr(X,Y)=0 Corr(X,Y)=0

2 。 \quad\quad2^。 2 ∣ C o r r ( X , Y ) ∣ ≤ 1 |Corr(X,Y)| \leq 1 Corr(X,Y)1,当且仅当 X X X Y Y Y有严格线形关系时等式成立;

相关系数常称为"线形相关系数",相关系数只是反映了 X X X Y Y Y的"线性"相关程度;对于非线性关系, ∣ C o r r ( X , Y ) ∣ |Corr(X,Y)| Corr(X,Y)的值不定。


X ∼ R ( − 1 / 2 , 1 / 2 ) X\sim R(-1/2,1/2) XR(1/2,1/2),即区间 [ − 1 / 2 , 1 / 2 ] [-1/2,1/2] [1/2,1/2]内的均匀分布,而 Y = c o s ( X ) Y=cos(X) Y=cos(X),由于 E ( X ) = 0 E(X)=0 E(X)=0
C o v ( X , Y ) = E ( X Y ) = E ( X c o s ( X ) ) = ∫ − 1 / 2 1 / 2 x c o s x d x = 0 Cov(X,Y)=E(XY)=E(Xcos(X))=\int_{-1/2}^{1/2}xcosxdx=0 Cov(X,Y)=E(XY)=E(Xcos(X))=1/21/2xcosxdx=0

X X X Y Y Y有严格的函数关系(非线性),但其协方差为0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值