UVA-10780-Again Prime? No Time(素数分解)



题意:给定两整数m,n(m < 5 000, n < 10 000),求一最大k,使得m^k能被 n! 整除.


题目链接:Again Prime? No Time.


解题思路:

抱着试一试的心态AC了。。。。。。

想到 m^k 能被 n! 整除,那么 m 任意素数因子 p 的k次方都能被 n! 整除,因此只要保存 n!中各个素因子的个数即可,


然后枚举 m 的素数因子, 求出最小的倍数就是答案,若素数因子 p 在 n! 中出现的次数小于 m中的,那么就是 “Impossible to divide”


之所以不敢写就是初始化的时候枚举1~N的所有素数因子时间复杂度为O(N^2),没想到数据挺水的,后来上网看了下,都大致是这个解法。。。。。。


代码:

#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <map>
#include <string>
#include <list>

using namespace std;
const int N = 1e4;
int dp[N+10][N+10];
struct node
{
    int prime,cnt;  //素数,素数出现的次数
    node(int pp,int cc): prime(pp), cnt(cc) {}
    node() {}
};

void init()
{
    for(int i = 2;i <= N;i++) { // 枚举 i阶乘
        int m = sqrt(i+0.5), t = i;
        for(int k = 2;k <= i;k++) dp[i][k] = dp[i-1][k];    //将前面一个数的阶乘因子转移下来
        for(int j = 2;j <= m ;j++) {    //当前i 的素数因子分解
            while(t % j == 0) t /= j, dp[i][j] ++;
        }
        if(t > 1) dp[i][t] = dp[i-1][t] + 1;
    }
}

void OnlyEquation(int n, vector<node>& vec) //唯一分解定理
{
    int m = sqrt(n+0.5);
    for(int i = 2;i <= m;i++) {
        if(n % i == 0) {
            int t = 1;
            n /= i;
            while(n % i == 0) n /= i,t++;
            vec.push_back(node(i,t) );
        }
    }
    if(n > 1) vec.push_back(node (n,1));
}

int main()
{
    int T, cas = 1, n ,m;
    init();
    cin >> T;
    while(T--) {
        scanf("%d%d",&m,&n);
        vector<node> vec;
        OnlyEquation(m, vec);
        int mx = 9999999;
        int flag = 1;
        for(int i = 0,k = vec.size();i < k;i++) {
            node p = vec[i];
            if(dp[n][p.prime] < p.cnt) {    //n!阶乘中p.prime的因子个数小于m中的
                flag = 0;
                break;
            }
            int t = dp[n][p.prime] / p.cnt; //倍数关系,向下取整
            if(t < mx) mx = t;  //所有因子倍数中取最小的
        }
        printf("Case %d:\n",cas++);
        if(!flag) {
            printf("Impossible to divide\n");
            continue;
        }
        printf("%d\n", mx);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值