本篇主要介绍ResNeSt,其他相关系列及其变体见如下blog目录
ResNeSt: Split-Attention Networks
enables attention across feature-map groups,提出Split-Attention模块。
背景知识
基于Multi-path and Feature-map Attention。
- GoogleNet中提出Multi-path,其中每个网络块由不同的卷积内核组成。
- ResNeXt在中采用group convolution,具体见我的另一篇blog:ResNet系列及其变体(四)—ResNeXt
- SE-Net 提出 channel-attention 来重新调整通道响应。具体见我的另一篇blog:SENet网络结构概要解读
- SK-Net 引入 feature-map attention acrosss two network branches.具体见我的另一篇blog:SKNet网络结构概要解读
SE-Net、SK-Net和 论文提出的ResNeSt block结构图如下 :
Split-Attention Block
Feature-map Group
feature map被分为多个group,每个group又进行分组。
超参数K:表示group数目( cardinality hyperparameter)
超参数R:表示基数组内的split数(radix hyperparameter)
总feature map的group数 G = K R G=KR G=KR
对每一个group,transformations { F 1 , F 2 , . . . , F G } \{\mathcal F_1, \mathcal F_2, ...,\mathcal F_G\} { F1,F