ResNeSt网络结构概要解读

本文深入解析ResNeSt网络结构,探讨其Split-Attention Block,包括Feature-map Group、Split Attention in Cardinal Groups等核心概念,并介绍训练策略如Large Mini-batch、Label Smoothing等。ResNeSt结合了Multi-path、Feature-map Attention的思想,是ResNet、ResNeXt、SE-Net和SK-Net的创新集成。
摘要由CSDN通过智能技术生成

本篇主要介绍ResNeSt,其他相关系列及其变体见如下blog目录

ResNet系列及其变体目录


ResNeSt: Split-Attention Networks

enables attention across feature-map groups,提出Split-Attention模块。


背景知识

基于Multi-path and Feature-map Attention。

SE-Net、SK-Net和 论文提出的ResNeSt block结构图如下 :

在这里插入图片描述


Split-Attention Block

Feature-map Group
feature map被分为多个group,每个group又进行分组。
超参数K:表示group数目( cardinality hyperparameter)
超参数R:表示基数组内的split数(radix hyperparameter)
总feature map的group数 G = K R G=KR G=KR

对每一个group,transformations { F 1 , F 2 , . . . , F G } \{\mathcal F_1, \mathcal F_2, ...,\mathcal F_G\} { F1,F

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值