SKNet网络结构概要解读

SKNet旨在根据输入信息的多种尺度自适应调整接受域大小,通过结合3x3和5x5(或3x3 dilation=2)卷积,形成双分支结构。类似SE模块,它使用全局平均池化和全连接层生成权重矩阵,用于加权特征图,实现选择性卷积。文章介绍了SKNet的基本原理,并指出其可扩展到多分支结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇主要介绍SKNet,其他相关系列及其变体见如下blog目录

ResNet系列及其变体目录


提到SKNet,自然会想到SENet,SENet见SENet网络结构概要解读

Selective Kernel Networks

SKNet出发点:构建一种模型,使网络可以根据输入信息的多个尺度自适应的调节接受域大小

在这里插入图片描述

  • Split.使用不同的卷积核对原图进行卷积。对输入向量X进行不同卷积核大小的完整卷积操作(包括efficient grouped/depthwise convolutions,Batch Normalization,ReLU function)。在本文,选取的3x3和5x5卷积,得到两个feature map。为了进一步的效率,将5x5的传统卷积替代为dilation=2,卷积核为3x3的空洞卷积。

  • Fuse.类似SE模块的处理,两个feature map相加后,进行全局平均池化操作,全连接先降维再升维的为两层全连接层,输出的两个矩阵a和b,其中矩阵b为冗余矩阵,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值