MATLAB小技巧(2)Delaunay三角剖分算法

本文介绍了Delaunay三角剖分的概念及其在MATLAB中的应用,强调其在计算几何和目标跟踪中的重要性。通过MATLAB的三个仿真部分,阐述了Delaunay三角剖分的特性,包括空圆特性、最大化最小角特性,并探讨了其在多目标跟踪中的潜在用途。
摘要由CSDN通过智能技术生成

前言

MATLAB进行图像处理相关的学习是非常友好的,可以从零开始,对基础的图像处理都已经有了封装好的许多可直接调用的函数,这个系列文章的话主要就是介绍一些大家在MATLAB中常用一些概念函数进行例程演示!

Delaunay三角剖分的概念:给定平面一组离散点,构造一个三角剖分,使得每个三角形的外接圆内不包含第四个点。在三维情形,我们构造四面体剖分,使得每个四面体的外接球不包含第五个点。Delaunay三角剖分使得最小内角最大化,从而提高数值模拟的稳定性,因此成为网格生成算法的根基。

Delaunay三角剖分算法于1970年代被发明出来,由此诞生了“计算几何”这一学科。从此,计算几何领域的主旋律一直是Delaunay三角剖分。经过数十年的发展,Delaunay三角剖分算法日趋成熟,目前自动四面体网格生成问题已经被解决,并且在工业界得到广泛应用。

计算几何领域的翘楚- Herbert Edelsbrunner 基于Delaunay三角剖分技巧开创了知名的Geomagic公司,主要应用于点云重建。Geomagic于2013年被3D Systems收购,成为3D打印工业不可或缺的软件工具。

一. MATLAB仿真一

clc;
clear;
close all;

rand('state',0);
x = rand(1,10);
y = rand(1,10);
TRI = delaunay(x,y);
figure(1),triplot(TRI,x,y)
axis([0 1 0 1]);
hold on;
plot(x,y,'or');
hold off

在这里插入图片描述

二. MATLAB仿真二

clc;
clear;
close all;

rand('state', 0);
node = 8;
x = rand(1,node);
y = rand(1,node);
% delaunay是MATLAB中三角剖分的函数,返回的TRI是三角形的矩阵
% TRI的每一行表示三角形的三个点
TRI = delaunay(x,y);

% 绘图
figure; 
xmin = min(x(:)); xmax = max(x(:));
ymin = min(y(:)); ymax = max(y(:));
xl = xmax - xmin; yl = ymax - ymin;
axis([xmin-xl*0.1, xmax+xl*0.1,...
    ymin-yl*0.1, ymax+yl*0.1]);
hold on;

n = size(TRI, 1);
for i = 1 : n
    t1 = TRI(i, :);
    for j = 1 : length(t1)-1
        xt = [x(t1(j)) x(t1(j+1))];
        yt = [y(t1(j)) y(t1(j+1))];
        plot(xt, yt, 'k-', 'LineWidth', 2);
        pause(0.1);
    end
    xt = [x(t1(end)) x(t1(1))];
    yt = [y(t1(end)) y(t1(1))];
    plot(xt, yt, 'k-', 'LineWidth', 2);
    pause(0.1);
end

W = zeros(node);
for i = 1 : n
    for j = 1 : length(TRI(i, :))-1
        W(TRI(i, j), TRI(i, j+1)) = 1;
        W(TRI(i, j+1), TRI(i, j)) = 1;
    end
    W(TRI(i, end), TRI(i, 1)) = 1;
    W(TRI(i, 1), TRI(i, end)) = 1;
end
for i = 1 : node
    for j = 1 : node
        if ~W(i, j)
            W(i, j) = 10000;
        end
    end
end

在这里插入图片描述

三. MATLAB仿真三

clc; clear; close all;
rand('state',0);
x = rand(1,15);
y = rand(1,15);%随机数
TRI = delaunay(x,y);%三角剖分
triplot(TRI,x,y);%绘图
figure; 
xmin = min(x(:)); xmax = max(x(:));
ymin = min(y(:)); ymax = max(y(:));
xl = xmax - xmin; yl = ymax - ymin;
axis([xmin-xl*0.1, xmax+xl*0.1,...
    ymin-yl*0.1, ymax+yl*0.1]);%坐标轴
hold on;
for i = 1 : size(TRI, 1)%遍历三角形个数
    t1 = TRI(i, :);%索引,三角形个数分别由哪三个点构成
    for j = 1 : length(t1)-1
        xt = [x(t1(j)) x(t1(j+1))];
        yt = [y(t1(j)) y(t1(j+1))];
        plot(xt, yt, 'k-', 'LineWidth', 2);
        pause(0.1);
    end
    xt = [x(t1(end)) x(t1(1))];
    yt = [y(t1(end)) y(t1(1))];
    plot(xt, yt, 'k-', 'LineWidth', 2);
    pause(0.1);
end

在这里插入图片描述
在这里插入图片描述

四. 小结

要满足Delaunay三角剖分的定义,必须符合两个重要的准则:

(1)空圆特性:Delaunay三角网是唯一的(任意四点不能共圆),在Delaunay三角形网中任一三角形的外接圆范围内不会有其它点存在。

(2)最大化最小角特性:在散点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大。从这个意义上讲,Delaunay三角网是“最接近于规则化的“的三角网。具体的说是指在两个相邻的三角形构成凸四边形的对角线,在相互交换后,六个内角的最小角不再增大。

以下是Delaunay剖分所具备的优异特性:

(1)最接近:以最近的三点形成三角形,且各线段(三角形的边)皆不相交。

(2)唯一性:不论从区域何处开始构建,最终都将得到一致的结果。

(3)最优性:任意两个相邻三角形形成的凸四边形的对角线如果可以互换的话,那么两个三角形六个内角中最小的角度不会变大。

(4)最规则:如果将三角网中的每个三角形的最小角进行升序排列,则Delaunay三角网的排列得到的数值最大。

(5)区域性:新增、删除、移动某一个顶点时只会影响临近的三角形。

(6)具有凸多边形的外壳:三角网最外层的边界形成一个凸多边形的外壳。

三角剖分不仅可以用于作图,在多目标跟踪领域也有相应的应用,例如远距离的多个弱小目标,由于距离较远,在足够的采样精度下,经过三角剖分定位可以大致确定不同目标的相对位置,从而实现多目标的标定跟踪。每天学一个MATLAB小知识,大家一起来学习进步阿!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mozun2020

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值