mozun2020
玄铁时代
展开
-
视觉机器学习20讲-MATLAB源码示例(20)-蚁群算法
视觉机器学习20讲-MATLAB源码示例(20)-蚁群算法1. 蚁群算法2. Matlab仿真3. 仿真结果4. 小结1. 蚁群算法蚁群算法是一种用来寻找优化路径的概率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 这种算法具有分布计算、信息正反馈和启发式搜索的特征,本质上是进化算法中的一种启发式全局优化算法。蚁群系统(Ant System或Ant Colony System)是由意大利学者Dorigo、Maniezzo等人于原创 2022-04-09 02:00:00 · 2023 阅读 · 2 评论 -
视觉机器学习20讲-MATLAB源码示例(19)-遗传算法
视觉机器学习20讲-MATLAB源码示例(19)-遗传算法1. 遗传算法2. Matlab仿真3. 仿真结果4. 小结1. 遗传算法遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。该算法通过数学的方式,利用计算机仿真运算,将问题的求解过程转换成类似生物进化中的染色体基因的交原创 2022-04-09 01:45:00 · 859 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(18)-深度学习算法
视觉机器学习20讲-MATLAB源码示例(18)-深度学习算法1. 深度学习算法2. Matlab仿真3. 仿真结果4. 小结1. 深度学习算法受限玻尔兹曼2. Matlab仿真%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%功能:演示深度学习算法在计算机视觉中的应用%训练DBN用于分类;%环境:Win7,Matlab2018a%Modi: C.S%时间:2022-04-05%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%原创 2022-04-07 21:21:22 · 1504 阅读 · 2 评论 -
视觉机器学习20讲-MATLAB源码示例(17)-RBM学习算法
视觉机器学习20讲-MATLAB源码示例(17)-RBM学习算法1. RBM学习算法2. Matlab仿真3. 仿真结果4. 小结1. RBM学习算法受限玻尔兹曼机(restricted Boltzmann machine, RBM)是一种可通过输入数据集,学习概率分布的随机生成型神经网络。RBM最初由Paul Smolensky 于1986年提出,并将该模型命名为Harmonium(簧风琴),后又由Geoffrey Hinton 教授改进发明了快速的训练算法才被广泛使用,并由此得名RBM。RBM主原创 2022-04-07 00:09:52 · 1416 阅读 · 6 评论 -
视觉机器学习20讲-MATLAB源码示例(16)-CNN学习算法
视觉机器学习20讲-MATLAB源码示例(16)-CNN学习算法)1. CNN学习算法2. Matlab仿真3. 仿真结果4. 小结1. CNN学习算法卷积神经网络(CNN 或 ConvNet)是一种深度学习网络架构,它直接从数据中学习,不需要手动提取特征。CNN 特别适合在图像中寻找模式以识别物品、人脸和场景。这类网络也能很好地对一些非图像数据进行分类,如音频、时间序列和信号数据。需要目标识别和计算机视觉的应用(如自动驾驶汽车和人脸识别应用)高度依赖 CNN。卷积神经网络CNN的结构一般包含原创 2022-04-06 00:04:00 · 1226 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(15)-BP学习算法
视觉机器学习20讲-MATLAB源码示例(15)-BP学习算法)1. BP学习算法2. Matlab仿真3. 仿真结果4. 小结1. BP学习算法BP算法就是目前使用较为广泛的一种参数学习算法.BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络。BP算法是建立在BP神经网络(多层前馈网络)上的一种算法,它根据神经网络的路径进行一层一层的运算,这个运算包括信号的正向传播和误差原创 2022-04-06 00:03:05 · 1650 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(14)-字典学习算法
视觉机器学习20讲-MATLAB源码示例(14)-字典学习算法)1. 字典学习算法2. Matlab仿真3. 仿真结果4. 小结1. 字典学习算法字典学习(Dictionary Learning)和稀疏表示(Sparse Representation)在学术界的正式称谓应该是稀疏字典学习(Sparse Dictionary Learning)。该算法理论包含两个阶段:字典构建阶段(Dictionary Generate)和利用字典(稀疏的)表示样本阶段(Sparse coding with a pr原创 2022-04-06 00:02:51 · 2038 阅读 · 5 评论 -
视觉机器学习20讲-MATLAB源码示例(13)-稀疏表示算法
视觉机器学习20讲-MATLAB源码示例(13)-稀疏表示算法)1. 稀疏表示算法2. Matlab仿真3. 小结1. 稀疏表示算法稀疏表示(Sparse Representation)也叫作稀疏编码(Sparse Coding),就是用字典中元素的线性组合去表示测试样本。信号的稀疏表示并不是新的东西。很早就一直有在利用这一特性。例如,最简单的JPEG图像压缩算法。原始的图像信号经过DCT变换之后,只有极少数元素是非零的,而大部分元素都等于零或者说接近于零。这就是信号的稀疏性。任何模型都有建模的假原创 2022-04-06 00:02:33 · 2902 阅读 · 4 评论 -
视觉机器学习20讲-MATLAB源码示例(12)-RBF学习算法
视觉机器学习20讲-MATLAB源码示例(12)-RBF学习算法1. RBF学习算法2. Matlab仿真3. 仿真结果4. 小结1. RBF学习算法RBF(Radial Basis Function, 径向基函数)网络一般来说,是一种单隐层前馈神经网络,它使用径向基函数作为隐含层神经元激活函数,而输出层则是对隐含层神经元输出的线性组合。RBF网络一共分为三层,第一层为输入层即Input Layer,由信号源节点组成;第二层为隐藏层即图中中间的黄球,隐藏层中神经元的变换函数即径向基函数是对中心点径向对原创 2022-04-12 02:00:00 · 2070 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(11)-流形学习算法
视觉机器学习20讲-MATLAB源码示例(11)-流形学习算法)1. 流形学习算法2. Matlab仿真3. 仿真结果4. 小结1. 流形学习算法流形学习是一类借鉴了拓扑流形概念的降维方法,与核PCA的目的一样,它想要在低维空间中尽量保持在高维空间中的结构。一个形象的流形降维过程如下图,我们有一块卷起来的布,我们希望将其展开到一个二维平面,我们希望展开后的布能够在局部保持布结构的特征,其实也就是将其展开的过程,就像两个人将其拉开一样。流形学习方法有很多种,但是他们具有一些共同的特征:首先构造流形上样本原创 2022-04-05 19:37:52 · 1083 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(10)-增强学习算法
视觉机器学习20讲-MATLAB源码示例(10)-增强学习算法)1. 增强学习算法2. Matlab仿真3. 仿真结果4. 小结1. 增强学习算法增强学习(Reinforcement Learning)要解决的是这样的问题:一个能感知环境的自治agent,怎样通过学习选择能达到其目标的最优动作。 增强学习目的是构造一个控制策略,使得Agent行为性能达到最大。Agent从复杂的环境中感知信息,对信息进行处理。Agent通过学习改进自身的性能并选择行为,从而产生群体行为的选择,个体行为选择和群体行为选原创 2022-04-05 19:26:16 · 751 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(9)-SVM算法
视觉机器学习20讲-MATLAB源码示例(9)-SVM算法)1. SVM算法2. Matlab仿真3. 仿真结果4. 小结1. SVM算法SVM(support Vector Mac)又称为支持向量机,是一种二分类的模型。当然如果进行设计调整也可以用于多类别问题的分类。支持向量机可以分为线性核非线性两大类。其主要思想为找到空间中的一个更够将所有数据样本划开的超平面,并且使得本本集中所有数据到这个超平面的距离最短。支持向量机(SVM)是从数据中找出一个数据的分割超平面。将两个类别的数据完全分割开,并且在原创 2022-04-05 17:39:58 · 2464 阅读 · 2 评论 -
视觉机器学习20讲-MATLAB源码示例(8)-Adaboost算法
视觉机器学习20讲-MATLAB源码示例(8)-Adaboost算法)1. Adaboost算法2. Matlab仿真3. 小结1. Adaboost算法Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。Boosting,也称为增强学习或提升法,是一种重要的集成学习技术,能够将预测精度仅比随机猜度略高的弱学习器增强为预测精度高的强学习器,这在直接构造强学习器非常困难的情况下,为学习算法的设计提供了原创 2022-04-05 17:15:42 · 1141 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(7)-EM算法
视觉机器学习20讲-MATLAB源码示例(7)-EM算法)1. EM算法2. Matlab仿真3. 仿真结果4. 小结1. EM算法最大期望算法(Expectation-Maximization algorithm, EM),或Dempster-Laird-Rubin算法 ,是一类通过迭代进行极大似然估计(Maximum Likelihood Estimation, MLE)的优化算法 ,通常作为牛顿迭代法(Newton-Raphson method)的替代用于对包含隐变量(latent variabl原创 2022-04-05 16:58:48 · 2272 阅读 · 6 评论 -
视觉机器学习20讲-MATLAB源码示例(6)-贝叶斯学习算法
视觉机器学习20讲-MATLAB源码示例(6)-贝叶斯学习算法)1. 贝叶斯学习算法2. Matlab仿真3. 小结1. 贝叶斯学习算法贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(Naïve Bayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。 由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下原创 2022-04-05 16:46:38 · 894 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(5)-随机森林(Random Forest)学习算法
视觉机器学习20讲-MATLAB源码示例(5)-随机森林(Random Forest)学习算法1. 随机森林(Random Forest)学习算法2. Matlab仿真3. 仿真结果4. 小结1. 随机森林(Random Forest)学习算法随机森林是一种一种分类算法,属于集成学习中的Bagging算法,即引导聚合类算法,由于不专注于解决困难样本,所以模型的performance会受到限制。在学习随机森林算法之前,首先要弄懂三个概念:决策树;集成学习(Ensemble Learning)[多分类系统]原创 2022-04-11 00:30:00 · 2370 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(4)-决策树学习算法
视觉机器学习20讲-MATLAB源码示例(4)-决策树学习算法)1. 决策树学习算法2. Matlab仿真3. 仿真结果4. 小结1. 决策树学习算法统计学,数据挖掘和机器学习中的决策树训练,使用决策树作为预测模型来预测样本的类标。这种决策树也称作分类树或回归树。在这些树的结构里,叶子节点给出类标而内部节点代表某个属性。 在决策分析中,一棵决策树可以明确地表达决策的过程。在数据挖掘中,一棵决策树表达的是数据而不是决策。2. Matlab仿真%%%%%%%%%%%%%%%%%%%%%%%%%%%%原创 2022-04-05 15:15:18 · 1750 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(3)-回归学习算法
视觉机器学习20讲-MATLAB源码示例(3)-回归学习算法)1. 回归学习算法2. Matlab仿真3. 仿真结果4. 小结1. 回归学习算法回归学习(Regression Learning),又称为回归分析(Regression Analysis),是一种近似方法,从未知概率分布的随机样本中获得目标函数。 提及回归学习,常常首先想起一个概念叫做线性回归。那么什么是线性回归呢?线性回归其实是一个统计学概念。在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函原创 2022-04-05 15:01:08 · 1304 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(2)-KNN学习算法
视觉机器学习20讲-MATLAB源码示例(2)-KNN学习算法)1. KNN学习算法2. Matlab仿真3. 仿真结果4. 小结1. KNN学习算法KNN(K-Nearest Neighbor)算法是机器学习算法中最基础、最简单的算法之一。它既能用于分类,也能用于回归。KNN通过测量不同特征值之间的距离来进行分类。具体思路为:如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。也就是说,该方法在定类决策上只依据最邻近的一个或者几个样本的类原创 2022-04-05 14:40:19 · 829 阅读 · 0 评论 -
视觉机器学习20讲-MATLAB源码示例(1)-Kmeans聚类算法
视觉机器学习20讲-MATLAB源码示例(1)-Kmeans聚类算法)1. K-means聚类算法2. Matlab仿真3. 仿真结果4. 小结1. K-means聚类算法K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体。K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。2. Matlab仿真%%%%%%%%%%%%%%%%%%%原创 2022-04-05 14:19:01 · 1914 阅读 · 0 评论