
RA1:激光雷达
文章平均质量分 90
学无止境
mozun2020
玄铁时代
展开
-
产业观察:大族激光2025.4.8
为缩小这一差距,大族激光正在加大对半导体激光加工技术的研发投入,特别是在X-PIN定子制造技术方面取得的突破,有望提升其在新能源汽车电驱系统市场的竞争力。随着新能源汽车市场的快速发展,大族激光有望通过这些技术优势,进一步巩固其在激光加工设备制造领域的领先地位,为公司未来的持续发展注入新的动力。大族激光在智能装备领域的成功,不仅源于其在激光技术方面的深厚积累,更得益于公司在智能制造和自动化控制方面的持续投入。这表明公司的产品创新策略得到了市场的认可,有助于进一步巩固其在激光加工设备市场的领先地位。原创 2025-04-08 08:46:27 · 975 阅读 · 0 评论 -
目标跟踪Deepsort算法学习2025.4.7
DeepSORT(Deep Learning and Sorting)是一种先进的多目标跟踪算法,它结合了深度学习和传统的目标跟踪技术,在复杂环境下实现了高精度和鲁棒性的目标跟踪。该算法的核心思想是通过融合目标的外观特征和运动特征,实现对多个目标的持续跟踪,即使在目标被遮挡或暂时消失的情况下也能保持跟踪的连续性。用于预测目标的运动状态。通过这些对比,我们可以清晰地看到DeepSORT在继承SORT优点的同时,通过引入新的技术手段,解决了SORT在处理复杂场景时的局限性,从而在多目标跟踪领域取得了显著进步。原创 2025-04-07 08:09:11 · 226 阅读 · 0 评论 -
名人简记:狄拉克2025.4.7
狄拉克的贡献使我们对微观世界的认识达到了一个新的高度,为后续的理论研究和实验探索提供了重要的指导。他的工作不仅完善了量子力学的统计理论,还为理解微观世界中粒子的行为提供了关键的理论基础。对于给定的单粒子能级,他推导出了在该能级上占据个简并态的种可能方式,考虑到粒子的不可分辨性和每个态上最多只能有一个费米子占据的限制,最终得到了从个态中选取个态来占据的组合数。剑桥大学的学术环境和福勒教授的指导为狄拉克提供了一个理想的成长平台,使他能够迅速融入物理学的前沿研究,并在短时间内取得了令人瞩目的成果。原创 2025-04-07 07:54:00 · 805 阅读 · 0 评论 -
名人简记:冯.诺依曼2025.4.6
这种跨学科的研究方法不仅体现了冯·诺依曼的卓越才华,也为现代科学的发展提供了新的思路。值得注意的是,冯·诺依曼的外祖父卡恩对他的数学启蒙起到了关键作用,卡恩的心算能力出众,他引导冯·诺依曼发现了数字的规律和美感。冯·诺依曼的学术生涯展现了他在多个领域的卓越才华和广泛影响力,从纯数学到应用数学,再到计算机科学和自动机理论,他的贡献不仅推动了这些学科的发展,也为现代科技的进步奠定了坚实基础。冯·诺依曼的工作对原子弹的成功研制起到了关键作用,他不仅参与了理论计算,还为项目的整体规划和组织提供了重要支持。原创 2025-04-06 11:11:40 · 587 阅读 · 0 评论 -
索末菲实验室2025.4.6
一.实验室渊源一.实验室渊源阿诺德·索末菲(Arnold Sommerfeld)是20世纪初德国著名的理论物理学家,被誉为“大师之师”。他的学术生涯跨越多个领域,对现代物理学的发展产生了深远影响。索末菲于1868年12月5日出生于东普鲁士的柯尼斯堡(今俄罗斯加里宁格勒)。他的学术之旅始于柯尼斯堡大学,1891年获得博士学位后,在哥廷根大学担任助教,开始了他的教学生涯。此后,他先后在克劳斯塔尔矿业学校和亚琛技术学院任教,1906年起在慕尼黑大学担任理论物理学教授,直至1931年退休。原创 2025-04-06 11:10:20 · 969 阅读 · 0 评论 -
空中无人机等动态目标识别2025.4.4
通过注意力机制,模型可以根据当前任务的需求,自动分配不同模态数据的重要性,从而提高目标识别的准确性。例如,在农业无人机应用中,这种方法可以实现对农田病虫害的实时监测和预警,大大提高了农业生产的效率和质量。例如,在城市环境中,无人机需要频繁穿越复杂的建筑物和道路网络,这种动态更新能力可以帮助无人机更好地适应环境变化,提高飞行安全性和任务执行效率。这种方法通过分析事件的时空影响范围,能够更准确地识别和预测目标的行为模式,为无人机目标识别提供了新的思路。,这对于处理无人机采集的复杂图像数据尤为重要。原创 2025-04-04 15:21:16 · 971 阅读 · 0 评论 -
无人机等非合作目标公开数据集2025.4.3
在可见光遥感数据中,高光谱数据作为一种前沿技术,为无人机等空间动态目标的监测和分析提供了强大的工具。这种数据类型通过在连续的光谱范围内获取大量窄波段的反射率信息,能够捕捉到地物的精细光谱特征,为地表分类、矿物识别和植被健康评估等应用提供了丰富的信息基础。这些平台提供的数据涵盖了从卫星到航空平台的多尺度观测,为无人机等空间动态目标的研究和应用提供了丰富的数据源。这种数据类型通过测量物体在多个不同波段的反射率,提供了丰富的光谱信息,为地表特征的识别和分析提供了强有力的支持。,存储了定标后的各通道亮温数据。原创 2025-04-03 20:37:43 · 1724 阅读 · 0 评论 -
激光雷达信号处理(1) Gm-APD信号提取去噪学习2025.3.31
最近在学习激光雷达信号处理领域相关的研究,通过文献阅读和资料搜集,Gm-APD信号通常具有特定的噪声和信号特征,而类高斯匹配滤波,极大似然估计等算法可用于增强信号或抑制噪声来进行信号提取,再通过十字邻域方法进行去噪,可以有效提高目标信号的信噪比,通过仿真实验进行测试,这里将示例分享给大家,MATLAB版本为MATLAB2018a。原创 2025-03-31 13:00:54 · 920 阅读 · 0 评论 -
微纳结构非线性光学2025.3.30
非线性极化率是描述物质对光的非线性响应的物理量,它与光的强度和物质的性质有关。这种非线性响应可以用物质的极化率来描述,极化率是描述物质对光的响应的物理量,它与光的强度和物质的性质有关。这一领域的研究始于20世纪60年代,当时人们在实验中发现,当光强度足够高时,光的传播性质会发生显著变化,这种现象不能用经典的线性光学理论来解释,从而催生了非线性光学的诞生。他们开发了一种新型的水下OAM光通信系统,通过利用微纳结构中的非线性光学效应,实现了高效的光信号处理和调制,显著提高了水下光通信的传输速率和容量。原创 2025-03-30 15:02:15 · 947 阅读 · 0 评论 -
论文详读:《Smart three-dimensional imaging ladar using two Geiger-mode avalanche photodiodes》2025.3.28
文章最后一个结论到底是卫星还是真实,有待商榷,单个雷达的虚警率是46.9%,双雷达直接降到0.0092%,这里通过前面总体的提升效果来看,双雷达对比提升30%,系统算法提升30%,最终得到的数据还是没看太明白,哪位同学如果看出来了,望不吝赐教。TDC模块的引入使系统的时间分辨率达到皮秒级,结合cPCI总线的实时数据传输能力,实现了每秒百万级光子事件的处理速度,提升了成像效率。系统通过滤光片优化(如905 nm窄带滤光片)和抗干扰算法,减少了日光和其他光源的干扰,实现了100米范围内的白天高分辨率成像。原创 2025-03-28 09:58:47 · 722 阅读 · 0 评论 -
激光雷达产业观察-- 一径科技发展脉络2025.3.16
这种技术驱动的发展模式,为一径科技在未来的市场竞争中奠定了坚实的技术基础,同时也为中国激光雷达产业的自主可控发展做出了重要贡献。这种多元化的股东结构不仅为公司提供了稳定的资金支持,还为其技术研发、产品迭代和市场拓展提供了丰富的资源和专业的指导。通过这些产品,一径科技构建了一个完整的激光雷达解决方案生态系统,为自动驾驶和智能交通领域的客户提供了全方位的选择。这种多元化的股东结构为公司提供了稳定的资金支持,同时也为其技术研发、产品迭代和市场拓展提供了丰富的资源和专业的指导。原创 2025-03-16 00:15:00 · 577 阅读 · 0 评论 -
激光雷达产业观察-- 镭神智能发展脉络2025.3.16
此外,镭神智能还在国内外多个城市设立了办事处,产品远销美、加、德、法、英、日、韩等十多个国家,展现了其在全球市场的影响力。公司正在探索FMCW测量原理在固态激光雷达中的应用,尽管面临技术挑战,但这种长远的技术布局展现了镭神智能在激光雷达领域的战略眼光和创新精神。镭神智能的发展历程是一个不断创新和突破的过程。随着激光技术在测绘、自动驾驶、机器人等领域的广泛应用,创始人敏锐捕捉到激光雷达作为关键传感器的巨大潜力,决定创立镭神智能,专注于激光雷达技术的研发和应用,以满足市场对高精度、高性能传感器的迫切需求。原创 2025-03-16 00:15:00 · 597 阅读 · 0 评论 -
激光雷达产业观察-- 禾赛科技发展脉络2025.3.15
公司通过自主研发和生产,不仅提高了国内激光雷达产业的技术水平,也带动了相关上下游产业的发展,如芯片制造、光学元件生产等。禾赛科技的产品在市场上表现优异,2022年公司实现了月交付量超过1万台的里程碑,成为全球首家达到这一交付规模的车载激光雷达公司。面对这些挑战,禾赛科技通过积极的法律应对和持续的技术创新,努力巩固和提升其在国际市场中的地位。这一成本优势不仅提高了公司的盈利能力,也为产品的市场竞争力提供了有力支撑。这一认证不仅证明了公司产品的可靠性和安全性,也为禾赛科技在全球市场的拓展提供了重要保障。原创 2025-03-15 01:00:00 · 884 阅读 · 0 评论 -
激光雷达产业观察--速腾聚创发展脉络2025.3.14
一.发展历程一.发展历程速腾聚创的创立可追溯至2014年8月28日,这家充满活力的高科技企业诞生于中国深圳。公司创始人邱纯鑫是一位富有远见的企业家,他的创业之路充满了创新精神和技术洞察力。邱纯鑫的创业灵感源于他在哈尔滨工业大学深圳校区的学术研究。在完成博士论文答辩后,他敏锐地捕捉到自动驾驶技术的巨大潜力,特别是激光雷达在智能交通领域的应用前景。这种前瞻性的思考为速腾聚创的创立奠定了基础。速腾聚创的创立背景反映了产学研深度融合的趋势。原创 2025-03-14 00:15:00 · 1310 阅读 · 0 评论 -
瑞典国防研究局FOI激光雷达领域研究概况2025.3.13
瑞典国防研究局(FOI)是瑞典国防部直属的 国家级科研机构 ,成立于1945年。作为瑞典国防领域的核心研发力量,FOI专注于 军事技术和国家安全*相关研究,涵盖核武器模拟、军事技术评估、国家安全战略等多个领域。其研究成果不仅为瑞典国防决策提供科学支持,也在国际军事技术交流中发挥重要作用。原创 2025-03-13 00:45:00 · 654 阅读 · 0 评论 -
米兰理工大学激光雷达领域研究概况2025.3.12
在单光子激光雷达技术的研究中,实验验证是至关重要的环节。这些潜在的技术突破点不仅展示了米兰理工大学在单光子激光雷达研究领域的创新能力,也为该技术在更多领域的应用开辟了新的可能性。米兰理工大学在单光子激光雷达技术方面的高水平研究成果,不仅提升了该校在国际光学研究领域的地位,也为该技术的进一步发展和应用提供了重要支持。这种技术通过巧妙结合低重复频率的长脉冲序列(宏脉冲)和高重复频率的短脉冲序列(子脉冲),有效解决了单光子激光雷达面临的距离模糊问题,同时提高了激光器的峰值功率,从而实现更远距离的探测。原创 2025-03-12 00:30:00 · 568 阅读 · 0 评论 -
韩国 KAIST激光雷达领域研究概况2025.3.12
通过将激光发射、接收和信号处理功能集成到单个芯片上,KAIST的单光子激光雷达系统能够以更小的体积和更低的功耗实现高性能的环境感知功能,为自动驾驶和机器人技术的发展提供了新的可能性。这一合作模式的建立,为KAIST的激光雷达研究提供了强有力的产业支持,同时也为研究成果的快速转化奠定了基础。通过将激光发射、接收和信号处理功能集成到单个芯片上,KAIST的单光子激光雷达系统能够以更小的体积和更低的功耗实现高性能的环境感知功能,为自动驾驶和机器人技术的发展提供了新的可能性。,形成了一支规模较大的研究团队。原创 2025-03-12 00:15:00 · 551 阅读 · 0 评论 -
英国赫瑞瓦特大学激光雷达领域研究概述2025.3.11
通过优化光学布局、采用先进的冷却技术和滤波方案,赫瑞瓦特大学的系统能够在相对较短的距离内实现更高的分辨率和精度,这为高精度测量和微观特征识别等应用提供了强有力的技术支持。赫瑞瓦特大学的研究优势主要体现在系统集成创新方面,通过优化光学布局、采用先进的冷却技术和滤波方案,实现了在相对较短距离内的高分辨率和高精度成像。赫瑞瓦特大学在这一领域的研究取得了显著进展,特别是在TCSPC技术的优化和应用方面。在单光子激光雷达技术的全球竞争中,赫瑞瓦特大学凭借其独特的技术优势和创新能力,在多个方面展现出卓越的研究实力。原创 2025-03-11 00:15:00 · 1443 阅读 · 0 评论 -
激光雷达目标探测顶刊简介2025.3.11
一.顶级期刊一.顶级期刊在激光雷达小目标探测识别和深度学习相关领域,IEEE系列期刊为研究人员提供了高质量的发表平台。J-STARS专注于应用地球观测和遥感领域的特定主题,为相关领域的研究人员提供了一个发表高质量研究成果的平台。RAL是机器人领域的新兴期刊,旨在为研究人员提供一个快速发表高质量研究成果的平台。对于激光雷达小目标探测识别和深度学习相关领域的研究人员来说,这些IEEE系列期刊提供了高质量的发表平台。在投稿时,建议仔细阅读各期刊的投稿指南,确保研究内容符合期刊的范围,并严格遵守格式要求。原创 2025-03-11 00:30:00 · 1406 阅读 · 0 评论 -
单光子激光雷达探测器观察2025.3.10
例如,在紫外波段单光子激光雷达方面,中国科学技术大学和南京大学的研究团队合作开发出具有实用价值的紫外半导体单光子探测器,实现了1-3.5公里高度范围内的臭氧浓度监测。随着国产单光子激光雷达探测器技术的不断进步,预计其在性能和价格方面将继续缩小与国际先进水平的差距,为我国激光雷达产业的发展注入新的动力。这些研发机构的努力不仅推动了国产单光子激光雷达探测器技术的进步,也为我国激光雷达产业的发展注入了新的活力。随着技术的不断进步和产业链的完善,国产单光子激光雷达探测器有望在全球市场中占据更重要的地位。原创 2025-03-10 11:23:58 · 1034 阅读 · 0 评论 -
国内顶尖院校企业激光雷达各类应用领域前沿课题博士后项目汇总2025.3.9
一.专业领域一.专业领域随着自动驾驶技术的快速发展,激光雷达作为关键传感器在智能驾驶领域发挥着日益重要的作用。国内顶尖院校和企业在这一领域开展了多项前沿课题研究,为智能驾驶技术的突破提供了强有力的支持。原创 2025-03-09 00:47:06 · 1071 阅读 · 0 评论 -
激光雷达市场观察4-美国雷神公司激光雷达发展脉络2025.3.8
为导向,通过材料创新、算法优化与制造升级,巩固其在高端传感领域的领导地位。未来,随着军民融合政策的深化,其技术或将在自动驾驶、智慧城市等领域实现衍生应用。雷神公司早期技术积累集中于雷达和电子战系统,为后续激光雷达研发奠定基础。雷神公司的激光雷达技术始终以。原创 2025-03-08 02:00:00 · 1447 阅读 · 0 评论 -
激光雷达市场观察3-美国雷神公司发展脉络与核心技术解析2025.3.7
雷神公司的百年历程,是一部技术创新与战略并购交织的史诗。从真空管到AI雷达,从“麻雀”导弹到全球反导网络,其技术路径始终围绕“决策优势”展开,体现了“以战养研、以研促战”的军工复合体逻辑。未来,随着AI与量子技术的突破,雷神或将继续主导全球防务技术的范式变革。原创 2025-03-07 01:00:00 · 1074 阅读 · 0 评论 -
激光雷达市场观察2-美国 PLI 发展脉络与核心技术解析2025.3.7
通过持续的技术迭代,PLI正推动单光子探测从专业领域向消费级市场渗透。其技术路线为自动驾驶感知系统提供了兼顾性能与可靠性的解决方案,在L4级自动驾驶商业化进程中占据关键地位。例如,其32×32像素阵列产品通过微透镜集成,将填充因子从9%提升至75%,显著提高光子捕获能力。2005年,PLI从IBM获得单光子探测技术专利许可,结合自身在半导体外延工艺上的积累,率先实现了。,总部位于美国新泽西州,最初专注于光通信与半导体技术研发。2016年,PLI成立汽车LiDAR事业部,推出面向自动驾驶的。原创 2025-03-07 00:15:00 · 573 阅读 · 0 评论 -
激光雷达市场观察1--美国 Princeton Lightwave 公司2025.3.6
Princeton Lightwave通过持续的技术创新与战略转型,从国防领域的小众供应商成长为自动驾驶核心传感器的重要参与者。未来,随着量子技术与人工智能的融合,该公司或将在感知系统的智能化与多功能化领域继续引领变革。通过芯片集成和材料创新,公司逐步解决了盖革模式LiDAR的高成本问题。Princeton Lightwave的盖革模式技术填补了传统LiDAR在远距离、高精度探测上的空白,尤其在。,推动1550nm波长成为行业主流选择,减少对人眼潜在风险,同时促进美国交通部对自动驾驶传感器的法规完善。原创 2025-03-06 09:55:51 · 796 阅读 · 0 评论 -
美国MIT林肯实验室激光雷达方向2000-2025年研究成果与进度2025.3.6
2000年至2025年,MIT林肯实验室通过持续的技术迭代与跨学科协作,将激光雷达从军事专用设备发展为涵盖医疗、交通、量子通信的通用技术平台。其核心经验在于技术设施超前投资与人才创新文化培育的双轨策略,为全球激光雷达领域树立了标杆。未来,随着量子技术与人工智能的深度融入,林肯实验室或将继续定义下一代感知系统的技术边界。原创 2025-03-06 08:53:39 · 1064 阅读 · 0 评论 -
2004-2024年可调谐激光雷达研究领域国内外发展研究2025.2.28
一.可调谐激光雷达概述一.可调谐激光雷达概述可调谐激光雷达的基本原理建立在技术之上。这一技术巧妙地结合了激光光源的波长可调谐性和相位敏感检测的优势。其核心在于利用可调谐激光器在短时间内快速改变输出波长,形成特定的频率调制信号。当这种调制信号遇到目标反射回来时,在接收端会产生一个与目标距离和运动状态相关的中频信号。通过对这个中频信号进行分析,可以精确计算出目标的距离和速度信息。这种方法不仅提高了测量精度,还显著降低了系统复杂度和成本,为可调谐激光雷达的广泛应用奠定了坚实的理论和技术基础。原创 2025-02-28 21:55:21 · 754 阅读 · 0 评论 -
激光雷达弱小目标识别国内外最新研究成果与进展2025.2.26
激光雷达通过发射激光脉冲并测量其返回时间来计算目标的距离。通过扫描机制,激光雷达可以获取周围环境的三维点云数据。点云数据由大量的点组成,每个点包含三维坐标和反射强度等信息。弱小目标通常指在激光雷达点云中反射点数量较少、特征不明显的目标。这类目标可能包括行人、自行车、小型动物,无人机、鸟类甚或者其他漂浮在空中的物体等。由于点云数据稀疏,弱小目标的识别难度较大。原创 2025-02-26 15:16:22 · 1126 阅读 · 0 评论