Codeforces Round #461 (Div. 2) ABCDE

A. Cloning Toys
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Imp likes his plush toy a lot.

Recently, he found a machine that can clone plush toys. Imp knows that if he applies the machine to an original toy, he additionally gets one more original toy and one copy, and if he applies the machine to a copied toy, he gets two additional copies.

Initially, Imp has only one original toy. He wants to know if it is possible to use machine to get exactly xcopied toys and y original toys? He can't throw toys away, and he can't apply the machine to a copy if he doesn't currently have any copies.

Input

The only line contains two integers x and y (0 ≤ x, y ≤ 109) — the number of copies and the number of original toys Imp wants to get (including the initial one).

Output

Print "Yes", if the desired configuration is possible, and "No" otherwise.

You can print each letter in arbitrary case (upper or lower).

Examples
input
Copy
6 3
output
Yes
input
Copy
4 2
output
No
input
Copy
1000 1001
output
Yes
Note

In the first example, Imp has to apply the machine twice to original toys and then twice to copies.


y=0和y=1特判,其他情况O(1)解决


#include <cstdio>
#include <iostream>
#include <string.h>
#include <string> 
#include <map>
#include <queue>
#include <deque>
#include <vector>
#include <set>
#include <algorithm>
#include <math.h>
#include <cmath>
#include <stack>
#include <iomanip>
#define mem0(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,0x3f,sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
const int maxn=100005,inf=0x3f3f3f3f;  
const ll llinf=0x3f3f3f3f3f3f3f3f;   
const ld pi=acos(-1.0L);

int main() {
	int x,y;
	cin >> x >> y;
	if (y==0) {
		cout << "No";
		return 0;
	} 
	if (y==1) {
		if (x==0) cout << "Yes"; else cout << "No";
		return 0;
	}
	if (x>=y-1) {
		if ((x+1-y)%2==0) cout << "Yes"; else cout << "No";
	} else cout << "No";
	return 0;
}
B. Magic Forest
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Imp is in a magic forest, where xorangles grow (wut?)

A xorangle of order n is such a non-degenerate triangle, that lengths of its sides are integers not exceeding n, and the xor-sum of the lengths is equal to zero. Imp has to count the number of distinct xorangles of order n to get out of the forest.

Formally, for a given integer n you have to find the number of such triples (a, b, c), that:

  • 1 ≤ a ≤ b ≤ c ≤ n;
  • , where  denotes the bitwise xor of integers x and y.
  • (a, b, c) form a non-degenerate (with strictly positive area) triangle.
Input

The only line contains a single integer n (1 ≤ n ≤ 2500).

Output

Print the number of xorangles of order n.

Examples
input
Copy
6
output
1
input
Copy
10
output
2
Note

The only xorangle in the first sample is (3, 5, 6).



O(n^2)枚举,因为两个数异或结果为0,这两个数必然相等,所以a^b^c=0可以转化为a^b=c.

#include <cstdio>
#include <iostream>
#include <string.h>
#include <string> 
#include <map>
#include <queue>
#include <deque>
#include <vector>
#include <set>
#include <algorithm>
#include <math.h>
#include <cmath>
#include <stack>
#include <iomanip>
#define mem0(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,0x3f,sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
const int maxn=2505,inf=0x3f3f3f3f;  
const ll llinf=0x3f3f3f3f3f3f3f3f;   
const ld pi=acos(-1.0L);

int main() {
	int i,j,k,n,ans=0;
	cin >> n;
	ans=0;
	for (i=1;i<=n;i++) {
		for (j=i;j<=n;j++) {
			k=(i^j);
			if (k<i+j&&k>=j&&k<=n)
				ans++;
		}
	}
	cout << ans << endl;
	return 0;
}
C. Cave Painting
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Imp is watching a documentary about cave painting.

Some numbers, carved in chaotic order, immediately attracted his attention. Imp rapidly proposed a guess that they are the remainders of division of a number n by all integers i from 1 to k. Unfortunately, there are too many integers to analyze for Imp.

Imp wants you to check whether all these remainders are distinct. Formally, he wants to check, if all 1 ≤ i ≤ k, are distinct, i. e. there is no such pair (i, j) that:

  • 1 ≤ i < j ≤ k,
  • , where  is the remainder of division x by y.
Input

The only line contains two integers nk (1 ≤ n, k ≤ 1018).

Output

Print "Yes", if all the remainders are distinct, and "No" otherwise.

You can print each letter in arbitrary case (lower or upper).

Examples
input
Copy
4 4
output
No
input
Copy
5 3
output
Yes
Note

In the first sample remainders modulo 1 and 4 coincide.


我们对n比较小的情况打表之后,发现满足条件的k不会太大,于是可以大胆猜想对于给定的n,只要穷举最大的k就好了~

以下为打表程序,发现甚至连大于23的都没有

#include <cstdio>
#include <iostream>
#include <string.h>
#include <string> 
#include <map>
#include <queue>
#include <deque>
#include <vector>
#include <set>
#include <algorithm>
#include <math.h>
#include <cmath>
#include <stack>
#include <iomanip>
#define mem0(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,0x3f,sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
const int inf=0x3f3f3f3f;  
const ll llinf=0x3f3f3f3f3f3f3f3f;   
const ld pi=acos(-1.0L);
bool a[100005];

int main() {
	ll n,k,i;
//	cin >> n >> k;
//	if (k>=n) cout << "No";

	for (ll n=1;n<=100000000;n++) {
		mem0(a);
		for (i=1;i<=n;i++) {
			if (a[n%i]) break; else a[n%i]=1;
		}
		if (i>=23) cout << n << endl;
//		cout << n  << " " << i << endl;
	}
	return 0;
}

AC程序

#include <cstdio>
#include <iostream>
#include <string.h>
#include <string> 
#include <map>
#include <queue>
#include <deque>
#include <vector>
#include <set>
#include <algorithm>
#include <math.h>
#include <cmath>
#include <stack>
#include <iomanip>
#define mem0(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,0x3f,sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
const int inf=0x3f3f3f3f;  
const ll llinf=0x3f3f3f3f3f3f3f3f;   
const ld pi=acos(-1.0L);
bool a[10000005];

int main() {
	ll n,k,i;
	cin >> n >> k;
	mem0(a);
	for (i=1;;i++) {
		if (a[n%i]) break;
		a[n%i]=1;
	}
	if (k>=i) cout << "No"; else cout << "Yes";
	return 0;
}
D. Robot Vacuum Cleaner
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Pushok the dog has been chasing Imp for a few hours already.

Fortunately, Imp knows that Pushok is afraid of a robot vacuum cleaner.

While moving, the robot generates a string t consisting of letters 's' and 'h', that produces a lot of noise. We define noise of string t as the number of occurrences of string "sh" as a subsequence in it, in other words, the number of such pairs (i, j), that i < j and  and .

The robot is off at the moment. Imp knows that it has a sequence of strings ti in its memory, and he can arbitrary change their order. When the robot is started, it generates the string t as a concatenation of these strings in the given order. The noise of the resulting string equals the noise of this concatenation.

Help Imp to find the maximum noise he can achieve by changing the order of the strings.

Input

The first line contains a single integer n (1 ≤ n ≤ 105) — the number of strings in robot's memory.

Next n lines contain the strings t1, t2, ..., tn, one per line. It is guaranteed that the strings are non-empty, contain only English letters 's' and 'h' and their total length does not exceed 105.

Output

Print a single integer — the maxumum possible noise Imp can achieve by changing the order of the strings.

Examples
input
Copy
4
ssh
hs
s
hhhs
output
18
input
Copy
2
h
s
output
1
Note

The optimal concatenation in the first sample is ssshhshhhs.



结论题,按照s和h的比例贪心,把s比例高的排在前面就可以了~


#include <cstdio>
#include <iostream>
#include <string.h>
#include <string> 
#include <map>
#include <queue>
#include <deque>
#include <vector>
#include <set>
#include <algorithm>
#include <math.h>
#include <cmath>
#include <stack>
#include <iomanip>
#define mem0(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,0x3f,sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
const int maxn=1000005,inf=0x3f3f3f3f;  
const ll llinf=0x3f3f3f3f3f3f3f3f;   
const ld pi=acos(-1.0L);
char s[maxn];

struct qwe{
	ll ns,nh;
};
qwe a[maxn];

bool cmp(qwe x,qwe y) {
	return x.nh*y.ns<y.nh*x.ns;
}

int main() {
	ll n,i,j,ta,tb,ans=0;
	scanf("%I64d",&n);
	for (i=1;i<=n;i++) {
		scanf("%s",s);
		int len=strlen(s);
		a[i].ns=a[i].nh=0;
		ll cnt=0;
		for (j=0;j<len;j++) {
			if (s[j]=='s') a[i].ns++,cnt++; else a[i].nh++,ans+=cnt;
		}
	}
	sort(a+1,a+n+1,cmp);
	ll cnt=0;
	for (i=1;i<=n;i++) {
		ans+=cnt*a[i].nh;
		cnt+=a[i].ns;
	}
	printf("%I64d\n",ans);
	return 0;
}

E. Birds
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Apart from plush toys, Imp is a huge fan of little yellow birds!

To summon birds, Imp needs strong magic. There are n trees in a row on an alley in a park, there is a nest on each of the trees. In the i-th nest there are ci birds; to summon one bird from this nest Imp needs to stay under this tree and it costs him costi points of mana. However, for each bird summoned, Imp increases his mana capacity by B points. Imp summons birds one by one, he can summon any number from 0 to ci birds from the i-th nest.

Initially Imp stands under the first tree and has W points of mana, and his mana capacity equals W as well. He can only go forward, and each time he moves from a tree to the next one, he restores X points of mana (but it can't exceed his current mana capacity). Moving only forward, what is the maximum number of birds Imp can summon?

Input

The first line contains four integers nWBX (1 ≤ n ≤ 103, 0 ≤ W, B, X ≤ 109) — the number of trees, the initial points of mana, the number of points the mana capacity increases after a bird is summoned, and the number of points restored when Imp moves from a tree to the next one.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ 104) — where ci is the number of birds living in the i-th nest. It is guaranteed that .

The third line contains n integers cost1, cost2, ..., costn (0 ≤ costi ≤ 109), where costi is the mana cost to summon a bird from the i-th nest.

Output

Print a single integer — the maximum number of birds Imp can summon.

Examples
input
Copy
2 12 0 4
3 4
4 2
output
6
input
Copy
4 1000 10 35
1 2 4 5
1000 500 250 200
output
5
input
Copy
2 10 7 11
2 10
6 1
output
11
Note

In the first sample base amount of Imp's mana is equal to 12 (with maximum capacity also equal to 12). After he summons two birds from the first nest, he loses 8 mana points, although his maximum capacity will not increase (since B = 0). After this step his mana will be 4 of 12; during the move you will replenish 4 mana points, and hence own 8 mana out of 12 possible. Now it's optimal to take 4 birds from the second nest and spend 8 mana. The final answer will be — 6.

In the second sample the base amount of mana is equal to 1000. The right choice will be to simply pick all birds from the last nest. Note that Imp's mana doesn't restore while moving because it's initially full.


一个简单DP,真心觉得这题比D简单,D的结论不好猜

题解传送门


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值