线性回归
均方误差损失函数:
l
(
i
)
(
w
,
b
)
=
1
2
(
y
^
(
i
)
−
y
(
i
)
)
2
,
l^{(i)}(\mathbf{w}, b) = \frac{1}{2} \left(\hat{y}^{(i)} - y^{(i)}\right)^2,
l(i)(w,b)=21(y^(i)−y(i))2,
小批量随机梯度下降(mini-batch stochastic gradient descent):
(
w
,
b
)
←
(
w
,
b
)
−
η
∣
B
∣
∑
i
∈
B
∂
(
w
,
b
)
l
(
i
)
(
w
,
b
)
(\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b)
(w,b)←(w,b)−∣B∣ηi∈B∑∂(w,b)l(i)(w,b)
softmax和分类模型
softmax运算符(softmax operator)解决了以上两个问题。它通过下式将输出值变换成值为正且和为1的概率分布:
y
^
1
,
y
^
2
,
y
^
3
=
softmax
(
o
1
,
o
2
,
o
3
)
\hat{y}_1, \hat{y}_2, \hat{y}_3 = \text{softmax}(o_1, o_2, o_3)
y^1,y^2,y^3=softmax(o1,o2,o3)
其中
y
^
1
=
exp
(
o
1
)
∑
i
=
1
3
exp
(
o
i
)
,
y
^
2
=
exp
(
o
2
)
∑
i
=
1
3
exp
(
o
i
)
,
y
^
3
=
exp
(
o
3
)
∑
i
=
1
3
exp
(
o
i
)
.
\hat{y}1 = \frac{ \exp(o_1)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}2 = \frac{ \exp(o_2)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}3 = \frac{ \exp(o_3)}{\sum_{i=1}^3 \exp(o_i)}.
y^1=∑i=13exp(oi)exp(o1),y^2=∑i=13exp(oi)exp(o2),y^3=∑i=13exp(oi)exp(o3).
交叉熵(cross entropy):
H
(
y
(
i
)
,
y
^
(
i
)
)
=
−
∑
j
=
1
q
y
j
(
i
)
log
y
^
j
(
i
)
,
H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ) = -\sum_{j=1}^q y_j^{(i)} \log \hat y_j^{(i)},
H(y(i),y^(i))=−j=1∑qyj(i)logy^j(i),
最小化交叉熵损失函数等价于最大化训练数据集所有标签类别的联合预测概率。
pytorch中的gather函数:
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = torch.LongTensor([0, 2])
y_hat.gather(1, y.view(-1, 1))
输出:
tensor([[0.1000],
[0.5000]])
多层感知机
连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。
常见的激活函数:ReLU,Sigmoid,tanh函数。
H
=
ϕ
(
X
W
h
+
b
h
)
,
O
=
H
W
o
+
b
o
,
\begin{aligned} \boldsymbol{H} &= \phi(\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h),\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned}
HO=ϕ(XWh+bh),=HWo+bo,