基于体素的形态学方法(voxel-based morphometry, VBM),是分析大脑解剖学(结构)差异最常用方法之一。 其通过给大脑volume逐体素打标签(分类)的方式来进行组织分割(segmentation),过程高度自动化,比传统的基于ROI先验假设的分析方式(manual ROI tracing)得到的结果,更加具有 稳定性和可重复性。
VBM分析基于(高分辨率)MRI脑部扫描图像(一般用T1加权图像),涉及的预处理步骤主要包括:空间归一化(spatial normalisation——分割和比较的前提),偏置场校正(bias field correction——降低相同组织的亮度值差异,有利于组织分割),分割( segmentation),调制(modulation——把空间归一化过程中产生的变形场( deformation field)作用到分割结果上,使其中保留原来个体的组织体积)平滑(smoothing ——去噪,弥补分割缺陷,便于统计分析),流程如上图,图源1。
以下内容,主要源于笔者对NBAlab卢家峰老师的教学视频和PPT的理解性整理和大量的阅读拓展,初学小白一枚,如有错误之处,还望不吝指出。
原创不易,转载请注明出处。
copyright©意疏:https://blog.csdn.net/sinat_35907936/article/details/110087260
空间归一化(spatial normalisation)
1、VBM组织分割时,需要使用不同组织的组织概率图(Tissue probability maps,TPM)来作为分割的先验,具体细节见后文。而这些TPMs都是被归一化(配准)到了一个公共模板上了的,所以使用VBM来进行组织分割前提就是,将被试的脑袋归一化到公共模板上。另外,单样本统计分析常常是和一个标准进行比较,而这些标准也是配准到了公共模板的。
2、不同的人,脑袋大小形状都不一样,不同次的扫描,脑袋的摆放位置也不一样,如图1所示,图源1。而多样本统计分析寻找局部解剖结构变化的显著性,往往只是通过对应位置值相减,再通过假设检验来得到的。
也就是说,如果所有被试的图像相同空间坐标对应的解剖位置不基本一致,即没有一致性,那相减得到的并不是对应组织结构的变化,差异是没有意义的,无法进行进一步组水平统计分析。所以需要让所有被试的脑袋在不失皮质特征差异的前提下,都对齐到公共模板上,以校正大脑整体形状和解剖位置的差异。让不同的被试,不同的扫描之间具有可比性或者一致性。
公共模板的作用是确定一个公共坐标空间,以让不同的脑袋在该坐标空间下,相同的坐标位置对应的组织结构基本一致。对于特殊的研究对象,比如幼儿,需要通过数据制作专门的公共模板。对于成人,则常常直接使用一些著名的标准模板。
MNI是最常用的标准模板或者标准空间,在NeuroImaging and Surgical Technologies Lab的网站上,我们可以下载最新的一些模板来看看,有人脑也有猴子脑的。
ICBM 152是MNI的标准版,笔者下载了其第六代非线性对称平均脑立体定向配准模型的Nifti格式文件2 ,然后用MRIcron查看,结果如图2。由于它通过了152个人脑T1扫描图像的平均处理,所以看起来有点糊,不过我们