随着深度学习技术的发展,目标检测在自动驾驶、智能监控、工业质检等场景中得到了广泛应用。针对当前主流目标检测模型在边缘设备部署中所面临的计算资源受限和推理效率瓶颈问题,
YOLO
系列作为单阶段目标检测框架的代表,凭借其高精度与高速度的平衡优势,在工业界具有极高的应用价值。然而,YOLOv11
等最新版本在追求更高精度的过程中,往往引入了更大规模的网络结构,限制了其在嵌入式或移动端设备上的部署能力。为此,本文提出一种基于YOLOv11
的改进型轻量化目标检测架构,该模型融合了多尺度注意力机制(Multi-Scale Attention
)与反向残差移动块 (Inverted Residual Mobile Block, iRMB
),旨在实现 精度与效率双赢 的轻量化目标检测新范式。该方案不仅增强了模型对关键特征的关注能力,还在保持高精度的同时显著降低模型参数量与计算复杂度,并通过高效的模块设计显著降低了计算开销。
1. iRMB注意力机制
论文地址:
https://arxiv.org/pdf/2301.01146
代码地址: