简单的二阶算子的边缘检测

本文探讨了一阶和二阶算子在边缘检测中的作用,指出二阶算子如拉普拉斯算子虽然能检测灰度突变,但对噪声更敏感。为解决这一问题,介绍了LOG算子,它是先应用高斯滤波去除噪声,再进行拉普拉斯计算。同时提到了DOG算子,它是通过两次不同参数高斯滤波的差值来近似LOG算子的响应。
摘要由CSDN通过智能技术生成

上次说的点、线检测中用到了sobel、 Roberts、Prewitt等等都是一阶算子,拉普拉斯是二阶算子。首先说一下一阶和二阶算子的相同与不同。

无论是一阶算子还是二阶算子,本质上都是通过对于灰度突变的检测,当检测到图像的边缘时,微分算子都会对其进行响应,我们所使用的模板都是和为1的模板,这样一来在灰度相同的区域响应会为0,而边缘处时会出现不同的值。

而不同的是相比于一阶算子来说,二阶算子对于噪声更加敏感。一阶算子本来就对于噪声没有办法进行区别,反而会放大噪声,二阶算子则会在一阶算子的基础上继续放大。这会导致如果图像中存在大量噪声,一阶算子的效果会变得很差,二阶算子更差。

二阶算子:

LOG算子,简单来说就是将拉普拉斯与高斯低通滤波一起用。上文说过,噪声对于二阶算子的影响非常大,所以一般的二阶算子都要用的高斯低通滤波进行去噪处理。

步骤为:

1)对图像进行高斯低通滤波处理。

2)对1)中结果进行拉普拉斯计算找出零交叉处。

高斯滤波:G_{\sigma }=\frac{1}{\sqrt{2\pi \sigma^{2} }}e^{-(x^{2}+y^{2})/2\sigma ^{2}}

DOG算子:

简单来说,DOG算子的原理就是将一幅图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值