深度学习中的滑动平均算法原理详解

(一)、什么是一阶滞后滤波?
一阶滞后滤波是一种数据平滑的手段,通过对本次采样值与上次滤波输出,做概率加权叠加,有效的使得了每次数据的滤波结果不仅仅与本次采样有关还与上次的滤波输出有关,保证了每次的滤波输出都会一定程度上受上次滤波结果的影响,一般来说,这种影响在这种机制中都会占很大权重,即上次滤波输出的概率权重远大于本次采样的概率权重,从而可以使得滤波结果可以很平滑的从上次滤波结果过渡到本次滤波结果,即平滑过滤。

(1). 公式如下: Y n = α f i l t e r Y n − 1 + ( 1 − α f i l t e r ) X n Y_n=\alpha_{filter}Y_{n-1}+(1-\alpha_{filter})X_n Yn=αfilter

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值