指数移动平均(EMA)是什么?
指数移动平均(EMA)是一种常用的平滑方法。其原理非常简单,就是对序列数据进行加权平均。EMA会给近期的数据点赋予更大的权重,而对较早期的数据点赋予较小的权重。这样可以有效地平滑时间序列数据,使其更加连续和稳定。
指数移动平均(EMA)在深度学习中有什么用?
在深度学习中,EMA通常用于平滑模型参数的更新。具体来说,每次更新参数时,会对模型参数进行EMA处理,从而减少每次更新的波动,使模型更加稳定。此外,EMA还可以用于计算滑动平均梯度,用于优化器的更新,进一步提高模型的性能和泛化能力。
指数移动平均(EMA)计算公式解读
EMA[t] = α * x[t] + (1 - α) * EMA[t-1]
其中,t
表示时间步,x[t]
表示第t
个时间点的原始数据,α
是平滑因子,通常取值在0到1之间,表示当前样本的权重,(1 - α)
则表示历史数据的权重,EMA[t-1]
表示上一个时间点的EMA值。
计算公式的意义是用当前数据点的权重α
乘以当前数据点x[t]
,再用历史数据的权重(1 - α)
乘以上一个时间点的EMA值EMA[t-1]
,然后将两者相加,就得到了当前时间点的EMA值<