近世代数概论------整数

本文深入探讨了整数在交换环理论中的角色,包括交换环的基本性质、整数的加法和乘法运算、消去律和整环的概念。文章还介绍了有序整环、良序原则、数学归纳法以及欧几里得算法,展示了整数在这些数学概念中的重要性。此外,讨论了公因子、最大公因子、公倍数和算术基本定理,以及同余式和模运算的性质。最后,简要提及了函数、关系和集合的基础概念。
摘要由CSDN通过智能技术生成

交换环

交换环由一个集合与定义在该集合上的两个二元运算" + , * "组成。并且交换环还需要满足如下条件:

  • 封闭性: " + , * "产生的结果仍在该集合中。
  • 唯一性: 如果元素对应相同的两对元素: a = a ′ , b = b ′ a=a',b=b' a=a,b=b,则对应的 a + b = a ′ + b ′ , a ∗ b = a ′ ∗ b ′ a+b=a'+b',a * b=a' * b' a+b=a+b,ab=ab
  • 交换律: " + , * "运算满足交换律。
  • 结合律: " + , * "运算满足结合律。
  • 分配律: " + , * "运算满足分配律。
  • 幺元: " + , * "运算存在幺元。
  • 逆元: " + "运算存在逆元 a − 1 a^{-1} a1,有 a + a − 1 = e a+a^{-1}=e a+a1=e(元素与其逆元运算得到幺元e)。

整数集与加法与乘法构成一个环,加法与乘法的幺元分别为0与1,在整数集上不能为每一个数找到对应的逆元有 a ∗ a − 1 = 1 a * a^{-1}=1 aa1=1,正应如此无法保证对任意的 c ≠ 0 , a c = b c c\not=0,ac=bc c=0,ac=bc,有 a = b a=b a=b,但是整数集上是满足该性质的,所以追加:

  • 消去律: c ≠ 0 , a c = b c c\not=0,ac=bc c=0,ac=bc,有 a = b a=b a=b(乘法)。

满足该条件的交换环为整环。


例子: 整环 Z [ 2 ] Z[\sqrt 2] Z[2 ]均有如下的形式 a + b 2 a+b\sqrt 2 a+b2
相应的加法与乘法运算:

  • 加法: ( a + b 2 ) + ( c + d 2 ) = ( a + c ) + ( b + d ) 2 ) (a+b\sqrt 2)+(c+d\sqrt 2)=(a+c)+(b+d)\sqrt 2) (a+b2 )+(c+d2 )=(a+c)+(b+d)2 )
  • 乘法: ( a + b 2 ) ∗ ( c + d 2 ) = ( a c + 2 b d ) + ( b c + a d ) 2 ) (a+b\sqrt 2) * (c+d\sqrt 2)=(ac+2bd)+(bc+ad)\sqrt 2) (a+b2 )(c+d2 )=(ac+2bd)+(bc+ad)2 )
  • 加法与乘法的幺元分别为 ( 0 + 0 2 ) (0+0\sqrt 2) (0+02 ), ( 1 + 0 2 ) (1+0\sqrt 2) (1+02 )
  • 对应加法元素 ( a + b 2 ) (a+b\sqrt 2) (a+b2 )的逆元由a,b元素的逆元组成 ( − a ) + ( − b ) 2 (-a)+(-b)\sqrt 2 (a)+(b)2

由于加法与乘法的运算实际还是二元运算,只是元素的形式变化了,所以结合律,交换律,分配律也是对应成立的。

交换环基本性质

逻辑法则与证明:

  • 自反律: a = a a=a a=a
  • 对称律: a = b a=b a=b,则 b = a b=a b=a
  • 传递律: a = b , b = c a=b,b=c a=b,b=c,则 a = c a=c a=c

使用这几个定律可以对如下进行证明:

  • ( a + b ) c = a c + b c (a+b)c=ac+bc (a+b)c=ac+bc(右分配律)
  • 整数集上任意a,有 0 + a = a , 1 ∗ a = a 0+a=a,1 * a=a 0+a=a,1a=a(幺元)
  • 对于整数上的 a + c = a a+c=a a+c=a,则c必为0(加法幺元)
  • a + b = a + c a+b=a+c a+b=a+c,则 b = c b=c b=c(加法消去律)
  • 对整数集中的每个元素a, a + x = 0 a+x=0 a+x=0有唯一解(逆元唯一) a + x = 0 a+x=0 a+x=0有唯一解
  • 上面扩展为一般为 a + x = b a+x=b a+x=b有唯一解
  • 整数集中的任意元素a,有 a ∗ 0 = 0 = 0 ∗ a a * 0=0=0 * a a0=0=0a(乘法零元)
  • 整数集上 a ∗ u = a a * u=a au=a,则 u = 1 u=1 u=1(乘法幺元唯一)
  • 整数集上的 a , b a,b a,b,有 ( − a ) ( − b ) = a b (-a)(-b)=ab (a)(b)=ab

以最后一个进行证明:
a b + a ( − b ) + ( − a ) ( − b ) = a b + a ( − b ) + ( − a ) ( − b ) ab+a(-b)+(-a)(-b)=ab+a(-b)+(-a)(-b) ab+a(b)+(a)(b)=ab+a(b)+(a)(b)(自反律)
[ a b + a ( − b ) ] + ( − a ) ( − b ) = a b + [ a ( − b ) + ( − a ) ( − b ) ] [ab+a(-b)]+(-a)(-b)=ab+[a(-b)+(-a)(-b)] [ab+a(b)]+(a)(b)=ab+[a(b)+(a)(b)](结合律)
a [ b + ( − b ) ] + ( − a ) ( − b ) = a b + [ a + ( − a ) ] ( − b ) a[b+(-b)]+(-a)(-b)=ab+[a+(-a)] (-b) a[b+(b)]+(a)(b)=ab+[a+(a)](b)(分配律)
b + ( − b ) = 0 = a + ( − a ) = a ∗ 0 = 0 ∗ ( − b ) b+(-b)=0=a+(-a)=a * 0=0 * (-b) b+(b)=0=a+(a)=a0=0(b)(元素逆元,乘法零元)
( − a ) ( − b ) = a b (-a)(-b)=ab (a)(b)=ab(证毕)

对于的应用到二次方程中 ( x − a ) ( x − b ) = 0 (x-a)(x-b)=0 (xa)(xb)=0,即 a b = 0 ab=0 ab=0,对应 a = 0 a=0 a=0或者 b = 0 b=0 b=0,于是有 x − a = 0 x-a=0 xa=0或者 x − b = 0 x-b=0 xb=0,但是不是对于所有的环中都有该论断,但是在整数环中这是满足的(整数环中有消去律)。
因此,消去律可以与非零因子之积非零对应联系。


例子: 整环 Z [ 2 ] Z[\sqrt 2] Z[2 ]消去律对应为:
( a + b 2 ) ∗ ( c + d 2 ) = ( a c + 2 b d ) + ( b c + a d ) 2 ) = 0 (a+b\sqrt 2) * (c+d\sqrt 2)=(ac+2bd)+(bc+ad)\sqrt 2)=0 (a+b2 )(c+d2 )=(ac+2bd)+(bc+ad)2 )=0
若使对应等式成立有: a c + 2 b d ac+2bd ac+2bd=0且 b c + a d = 0 bc+ad=0 bc+ad=0
( a c + 2 b d ) d (ac+2bd)d (ac+2bd)d=0且 ( b c + a d ) c = 0 (bc+ad)c=0 (bc+ad)c=0(分配律)
a c d + 2 b d 2 = b c 2 + a c d acd+2bd^2=bc^2+acd acd+2bd2=bc2+acd 2 b d 2 = b c 2 2bd^2=bc^2 2bd2=bc2(加法元素的逆)
于是有b=0或者 2 d 2 = c 2 2d^2=c^2 2d2=c2

  • b=0时,对应 a c = 0 = a d , a = 0 ac=0=ad,a=0 ac=0=ad,a=0,则对应的 ( a + b 2 ) (a+b\sqrt 2) (a+b2 )为零因子。
  • 2
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值