3060显卡安装Pytorch-GPU版
文章目录
安装CUDA
查看NVIDIA,CUDA,cuDNN对应版本号
显卡驱动版本: 这个越高越好
NVIDIA支持的最高CUDA版本号
1.安装CUDA
建议安装CUDA11.2
(链接包含了CUDA
和cudNN
)
https://blog.csdn.net/qq_43682797/article/details/114525523?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522162556846816780262530137%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=162556846816780262530137&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-5-114525523.first_rank_v2_pc_rank_v29&utm_term=cuda11.2&spm=1018.2226.3001.4187
2. 添加CUDNN
将下载下来的cudNN文件放入CUDA路径替换掉

设置环境变量
右键此电脑->属性 -> 环境变量 - > 将CUDA的两个路径写进去
重启电脑让环境变量生效
打开命令提示符
输入 nvcc -V
注意 V是大写,小写会报错`
此处可见安装成功
!!! 错误方法
nvidia-smi
表示的是当前驱动可以安装的最大版本,并不是当前CUDA版本
安装Pytorch-GPU
注: 30系显卡暂时不支持CUDA11以下版本,CUDA不支持当前显卡的算力。
名词:
CUDA
: CUDA看作是一个工作台,上面配有很多工具,如锤子、螺丝刀cudaNN
: cuDNN是基于CUDA的深度学习GPU加速库,有了它才能在GPU上完成深度学习的计算。它就相当于工作的工具.
显卡驱动版本越高越好
CUDA
版本可以使用最高但是个缺点是Pytorch不一定支持高版本
如下最新版的Pytorch最多支持到CUDA11.3
先设置conda的镜像文件和pip镜像
- 设置conda镜像文件
- 修改
conda
指令的配置
conda
指令速度过慢,修改C:\Users\Admin
路径下的.condarc
文件
内容为:
channels:
- defaults
show_channel_urls: true
default_channels:
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
ssl_verify: false
设置pip镜像
在桌面新建test.py
文件
内容如下:
import os
ini="""[global]
index-url = https://pypi.doubanio.com/simple/
[install]
trusted-host=pypi.doubanio.com
"""
pippath=os.environ["USERPROFILE"]+"\\pip\\"
if not os.path.exists(pippath):
os.mkdir(pippath)
with open(pippath+"pip.ini","w+") as f:
f.write(ini)
该文件执行过程为:
打开Anaconda Prompt
C:\根目录下输入IDLE

然后在Shell中点 File->Open/New file
输入test.py的内容
点击Run->Run Module
安装GPU
版Pytorch
为了防止pip安装pytorch
出现MemoryError
使用如下命令
pip --no-cache-dir install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
如果要使用其他版本
使用官网给出的命令 但是一定要删除-c pytorch
不然无法使用自己设定的镜像
输入代码测试是否安装好
import torch
# 测试兼容性
torch.zeros(1).cuda()
# 测试GPU是否可用
torch.cuda.is_available()